FULL PAPER

Journal of Medicinal

and Pharmaceutical Chemistry Research

On topological indices of double and strong double graph of silicon carbide Si₂C₃-I[p,q]

Muhammad Shoaib Sardar^{a,*} |Muhammad Asad Ali^a |Faraha Ashraf^a |Murat Cancan^b

^a School of Mathematics, Minhaj University, Lahore, Pakistan ^b Faculty of Education, Van Yuzuncu Yıl University, Zeve Campus, Tuşba, 65080, Van, Turkey	Silicon is a semiconductor material with several advantages over the other similar materials, such as its low cost, nontoxicity, and almost limitless availability, as well as many years of expertise in its purification, manufacture, and device development. It is used in practical for all of the most recent electrical products. Graph theory can be used to depict a chemical structure, with vertices representing atoms and edges representing chemical bonds. Molecular descriptors are important in mathematical chemistry, particularly in QSPR/QSAR research. In this research, by using two graph operations, namely; double and strong double graph, we computed the closed formulas for some degree-based topological indices of silicon carbide. Furthermore, we also compare topological indices numerically and graphically.
*Corresponding Author: Muhammad Shoaib Sardar Email: shoaibsardar093@gmail.com	KEYWORDS Double graph; topological indices; strong double graph; silicon
Геl.: +923214928346	carbide Si ₂ C ₃ -I[p,q].

Introduction

In theoretical chemistry (mostly in QSAR/QSPR research), environmental chemistry, pharmacology, and toxicology, topological indices have numerous applications. Let G be an undirected simple graph with $V(G) = \{r_1, r_2, r_3, ..., r_n\}$ and $E(G) = \{e_1, e_2, e_3, \dots e_m\}$ as the vertex and edge sets. The degree of a vertex r is the number of edges incident to r, and it is symbolized by d_r . For undetermined terminologies and notations, we mention Robin J. Wilson book [1].

Mathematical chemistry provides useful tools like polynomials and functions that rely on information contained in the symmetry of graphs of chemical compounds and very helpful for the prediction of the understudy molecular compound and its characteristics without the usage of quantum mechanics. A topological index is a numerical parameter that describes the topology of a graph. It quantitatively describes the structure of molecules and is utilized in the establishment of qualitative structure activity relationships. Numerous topological indices existing [2,3], but here we investigate the topological indices which based on the degree of vertex [4-6]. Chemical graph theory is a field of mathematical chemistry in which we use graph theory methods to represent chemical activities mathematically.

Topological indices that will be explored in this article are given in Equations (1-7).

In topological indices, Geometric-Arithmetic index is associated with Physicochemical properties such as entropy and enthalpy of vaporization. Consider a graph G, then geometric-arithmetic index (*GA*) is defined [7] as:

$$GA(G) = \sum_{rs \in E(G)} \frac{2\sqrt{d_r d_s}}{d_r + d_s}.$$
 (1)

The atom-bond connectivity index (ABC) is a degree-based graph invariant. It can be used to simulate the thermodynamic properties of organic chemical compounds. Consider a graph G, then atom bond connectivity index (*ABC*) is defined [8] as follows:

$$ABC(G) = \sum_{\mathbf{rs}\in E(G)} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}}.$$
 (2)

The well-known index is forgotten topological index (F), which is very helpful for medical scientists to grasp chemical characteristics of the new drugs and is defined [9] as follows:

$$F(G) = \sum_{\rm rs \in E(G)} (d_r^2 + d_s^2).$$
(3)

The Inverse sum index (*ISI*) is defined [10] as:

$$ISI(G) = \sum_{rs \in E(G)} \frac{1}{\frac{1}{d_r} + \frac{1}{d_s}}.$$
 (4)

The First and the second multiplicative-Zagreb index multiplicative-Zagreb is used to examine the extreme molecular graphs and is defined [11,12] as follows:

$$PM_1(G) = \prod_{rs \in E(G)} (d_r)^2,$$
 (5)

$$PM_2(G) = \prod_{rs \in E(G)} (d_r \cdot d_s).$$
(6)

We can also write first multiplicative-Zagreb index [13] as:

$$PM_1(\mathcal{G}) = \prod_{rs \in E(\mathcal{G})} (d_r + d_s).$$
(7)

For more comprehensive and detailed study on indices and graphs, we mention the following articles [14-19, 23-48] for readers.

FIGURE 1 Two-dimensional structure of (Si₂C₃-I[p,q])

Silicon Carbide $Si_2C_3 - I[p,q]$ is a molecular graph in two dimensions [20], depicted in Figure 1. We used the following parameters to characterize its molecular graph: We define *p* as the number of linked unit cells in a row (chain) as in Figure 1(a), and *q* is the number of linked rows, each having *p* cells. In Figure 1(b), we showed how the cells in a row (chain) link to each another

and how one row relates to another row. Figure 1(c) displays the structure of onedimensional unit cell.

The double graph of silicon carbide is symbolized by $D[Si_2C_3-I(p,q)]$. Assume two copies of a $Si_2C_3-I(p,q)$, where $(p,q \ge 1)$ and join each vertex in one copy to its neighbor in the other copy to produce the

double graph [21] of the silicon carbide $Si_2C_3 - I(p,q)$. For example, the double graph of silicon carbide Si_2C_3 -I(1,1)is depicted in Figure 2. While for strong double graph *SD*[G] of the silicon carbide, $Si_2C_3 - I(p,q)$ is attained by taking two graphs of $Si_2C_3 - I(p,q)$, where $(p,q \ge 1)$

and joining the closed neighborhoods of each vertex in one graph to the adjacent vertex in the other graph [22]. The $SD[Si_2C_3-I(1,1)]$ is depicted in Figure 4.

Main results for double graph of silicon carbide $(Si_2C_3 - I(p,q))$

FIGURE 2 Silicon carbide Si₂C₃-I(1,1) and its D[Si₂C₃-I(1,1)]

Here, we calculate the indices which base on the degree of vertices, for the double graph of the silicon carbide $Si_2C_3-I(p,q)$. In $D(Si_2C_3-I(p,q))$, we have vertices of degree 2, 4, and 6. Edges of $D(Si_2C_3-I(p,q))$ are split into the edges of type $E[d_r, d_s]$, where rs is represent the edge. Silicon carbide $Si_2C_3-I(p,q)$ contains the edges of the type $E_{(2,4)}$, $E_{(2,6)}$, $E_{(4,4)}$, $E_{(4,6)}$, and $E_{(6,6)}$. Table 1 represents the edges of these types.

TABLE 1 Partitioning of edges

$E[d_r, d_s]$	Number of edges
E _(2,4)	4
$E_{(2,6)}$	4
$E_{(4,4)}$	4p + 8q
$E_{(4,6)}$	24p + 32q - 36
$E_{(6,6)}$	60pq - 36p - 52q + 28

Theorem 2.1. Let $D(Si_2C_3 - I(p,q))$ be the double graph of silicon carbide $Si_2C_3 - I(p,q)$. Then,

$$\begin{split} GA[D(Si_2C_3 - I(p,q))] &= \frac{8\sqrt{2}}{3} + 2\sqrt{3} \\ &+ (24p + 32q - 36)\frac{2\sqrt{6}}{5} \\ &+ 60pq - 32p \\ &- 44q + 28. \\ ABC[D(Si_2C_3 - I(p,q))] &= 4\sqrt{2} + (4p + 8q)\sqrt{\frac{3}{8}} + (24p \\ &+ 32q - 36)\sqrt{\frac{1}{3}} \\ &+ (60pq - 36p - 52q + 28)\frac{\sqrt{10}}{6}. \\ F[D(Si_2C_3 - I(p,q))] &= 384 + 1216p + 1824q \\ &+ 4320pq. \\ ISI[D(Si_2C_3 - I(p,q))] &= 180pq - 100p - 140q \end{split}$$

 $+(24p+32q)\frac{12}{5}+\frac{178}{3}$

$$\begin{array}{l} PM_1[D(Si_2C_3-I(p,q))]\\ &= 294912(p+2q)(240p\\ &+ 320q-360)(60pq\\ &- 36p-52q+28).\\ PM_2[D(Si_2C_3-I(p,q))]\\ &= 679477248(p+2q)(6p\\ &+ 8q-9)(30pq-18p\\ &- 26q+14). \end{array}$$

Proof: Consider the double molecular graph of silicon carbide $D(Si_2C_3 - I(p,q))$, contains 20 pq vertices and 60 pq - 8p - 12q edges. By using Equation (1) and Table 1, the *GA* index calculated as follows:

$$\begin{split} GA[D(Si_2C_3 - I(p,q))] \\ &= |E_{(2,4)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(2,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(4,4)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(4,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_rd_s}}{d_r + d_s} \\ &+ (24p + 32q - 36) \frac{2\sqrt{24}}{10} + (60pq - 36p) \\ &- 52q + 28) \frac{2\sqrt{36}}{12} \\ &+ (24p + 32q - 36) \frac{2\sqrt{6}}{5} \\ &+ (24p + 32q - 36) \frac{2\sqrt{6}}{5} \\ &+ 60pq - 32p \\ &- 44q + 28. \end{split}$$

 $ABC[D(Si_2C_3 - I(p,q))]$ $= |E_{(2,4)}| \sum_{rs \in E[D(Si_2C_3 - I(p,a))]} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}}$ $+ |E_{(2,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}}$ $+ \left| E_{(4,4)} \right| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}}$ $+ |E_{(4,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}}$ + $|E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}}.$ $ABC[D(Si_2C_3 - I(p, q)$ $= (4) \sqrt{\frac{4}{8} + (4)} \sqrt{\frac{6}{12} + (4p)}$ $+ 8q) \sqrt{\frac{2+4}{16}}$ $+(24p+32q-36)\sqrt{\frac{2+6}{24}}+(60pq-36p$ $-52q+28)\sqrt{\frac{4+6}{36}}$ $ABC[D(Si_2C_3 - I(p,q))]$ $= 4\sqrt{2} + (4p + 8q) \sqrt{\frac{3}{8}} + (24p)$ +32q-36) $\frac{1}{3}$ $+(60pq-36p-52q+28)\frac{\sqrt{10}}{6}.$

By applying Equation (3) and Table 1, (*F*) index is calculated as follows:

$$F[D(Si_2C_3 - I(p,q))] = |E_{(2,4)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2)$$

Via Equation (2) and Table 1, the *ABC* index is calculated as:

$$\begin{aligned} + |E_{(2,6)}| &\sum_{rs \in E[D(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2) \\ &+ |E_{(4,4)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} (d_r^2 \\ + |E_{(4,6)}| &\sum_{rs \in E[D(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2) \\ &+ |E_{(6,6)}| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} (d_r^2 \\ &+ d_s^2). \\ F[D(Si_2C_3 - I(p,q))] \\ &= (4)(4 + 16) + (4)(4 + 36) \\ &+ (4p + 8q)(16 + 16) \\ &+ (24p + 32q - 36)(16 + 36) + (60pq - 36p \\ &- 52q + 28)(36 + 36). \\ F[D(Si_2C_3 - I(p,q))] \\ &= 384 + 1216p + 1824q \\ &+ 4320pq. \end{aligned}$$

By using Equation (4) and Table 1, *ISI* index is calculated as follows:

$$\begin{split} ISI[D(Si_2C_3 - I(p,q))] \\ &= \left| E_{(2,4)} \right| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ \left| E_{(2,6)} \right| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ \left| E_{(4,4)} \right| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ \left| E_{(4,6)} \right| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ \left| E_{(6,6)} \right| \sum_{rs \in E[D(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &= (4)\frac{8}{6} + (4)\frac{12}{8} + (4p \\ &+ 8q)\frac{16}{8} + (24p + 32q \\ &- 36)\frac{24}{10} \\ &+ (60pq - 36p - 52q + 28)\frac{36}{12} \\ ISI[D(Si_2C_3 - I(p,q))] \\ &= 180pq - 100p - 140q \\ &+ (24p + 32q)\frac{12}{5} + \frac{178}{3} . \end{split}$$

Journal of Medicinal and Pharmaceutical Chemistry Research

By using Equation (7) and Table 1, PM_1 index is calculated as follows:

$$\begin{split} &PM_{1}[D(Si_{2}C_{3}-I(p,q))] \\ &= \left|E_{(2,4)}\right| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(2,6)}\right| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(4,4)}\right| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(4,6)}\right| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(6,6)}\right| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &PM_{1}[D(Si_{2}C_{3}-I(p,q))] \\ &= (4)(6) \times (4)(8) \\ &\times (4p+8q)(8) \\ &\times (24p+32q-36)(10) \\ &\times (60pq-36p-52q+28)(12) . \\ &PM_{1}[D(Si_{2}C_{3}-I(p,q))] \\ &= 294912(p+2q)(240p \\ &+ 320q-360)(60pq \\ &- 36p-52q+28). \end{split}$$

Via Equation (6) and Table 1, PM_2 index is calculated as:

$$PM_{2}[G] = \prod_{rs \in E(G)} (d_{r}.d_{s}).$$

$$PM_{2}[D(Si_{2}C_{3}-I(p,q))]$$

$$= |E_{(2,4)}| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}.d_{s})$$

$$\times |E_{(2,6)}| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}.d_{s})$$

$$\times |E_{(4,4)}| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}.d_{s})$$

$$\times |E_{(4,6)}| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}.d_{s}).$$

$$\times |E_{(6,6)}| \prod_{rs \in E[D(Si_{2}C_{3}-I(p,q))]} (d_{r}.d_{s}).$$

$$PM_{2}[D(Si_{2}C_{3}-I(p,q))]$$

$$= (4)(8) \times (4)(12)$$

$$\times (4p + 8q)(16)$$

$$\times (24p + 32q - 36)(24)$$

$$\times (60pq - 36p - 52q + 28)(36).$$

$$PM_2[D(Si_2C_3 - I(p,q))] = 679477248(p+2q)(6p + 8q - 9)(30pq - 18p - 26q + 14).$$

Comparison

In this section, we compute a numerical and graphical comparison of topological indices based on the degree of the vertex, which are computed above for the double graph of silicon carbide $[D(Si_2C_3-I[p,q])]$, where p = 1, 2, 3, ..., 10 and q = 1, 2, 3, ..., 10.

TABLE 2 Computation	of indices for double	graph of silicon	carbide [D(.	Si_2C_3 - $I[p,q]$
1				

(n, a)	GA	ABC	F	ISI	PM_1	PM_2
(p,q)	$[D(Si_2C_3 \hbox{-} I(p,q))]$	$[D(Si_2C_3 \hbox{-} I(p,q))]$	$[D(Si_2C_3 {-} l(p,q))]$	$[D(Si_2C_3 {-} l(p,q))]$	$[D(Si_2C_3 \hbox{-} I(p,q))]$	$[D(Si_2C_3 \hbox{-} I(p,q))]$
(1,1)	38.83125572	24.55232887	1664.00	133.7333333	0	0
(2,2)	197.6998260	183.0039025	11584.0	568.1333333	1.237214× 10 ¹¹	3.563178× 10 ¹²
(3,3)	476.5683962	496.3748098	30144.0	1362.533333	1.065080×10^{12}	3.067432×10^{13}
(4,4)	875.4369665	964.6650512	57344.0	2516.933333	4.231444× 10 ¹²	1.218656× 10 ¹⁴
(5,5)	1394.305537	1587.874626	93184.0	4031.333333	1.174363× 10 ¹³	3.382165× 10 ¹⁴
(6,6)	2033.174107	2366.003535	1.37664× 10 ⁵	5905.733333	2.643591× 10 ¹³	7.613542× 10 ¹⁴
(7,7)	2792.042677	3299.051778	1.90784×10 ⁵	8140.133333	5.185600× 10 ¹³	1.493452× 10 ¹⁵
(8,8)	3670.911247	4387.019356	2.52544× 10 ⁵	10734.53333	9.226508× 10 ¹³	2.657234× 10 ¹⁵
(9,9)	4669.779818	5629.906263	3.22944× 10 ⁵	13688.93333	1.526377× 10 ¹⁴	4.395967× 10 ¹⁵
(10,10)	5788.648388	7027.712510	4.01984×10 ⁵	17003.33333	2.386621× 10 ¹⁴	6.873469× 10 ¹⁵

FIGURE 3 Graphical representation of indices for double graph of silicon carbide $[D(Si_2C_3-I[p,q])]$

Page | 43

FIGURE 4 Silicon carbide Si₂C₃-I(1,1) and its SD[Si₂C₃-I(1,1)]

Main results for strong double graph of silicon carbide $(Si_2C_3 - I(p, q))$

We will compute indices which are based on the degree of vertices, for the strong double graph of the silicon carbide $Si_2C_3-I(p,q)$ in this section. In $SD(Si_2C_3-I(p,q))$, we have vertices of degree 3, 5, and 7. Edges of $SD(Si_2C_3-I(p,q))$ were split into the edges of type $E[d_r, d_s]$, where rs is represent the edge. Silicon carbide $Si_2C_3-I(p,q)$ contains edges of the type $E_{(3,3)}$, $E_{(3,5)}$, $E_{(3,7)}$, $E_{(5,5)}$, $E_{(5,7)}$, and $E_{(7,7)}$. Table 3 represents the edges of these types.

TABLE 3 Partitioning of edges

$E[d_r, d_s]$	Number of edges
$E_{(3,3)}$	2
$E_{(3,5)}$	4
$E_{(3,7)}$	4
$E_{(5,5)}$	4pq + 4p + 8q + 2
$E_{(5,7)}$	24p + 32q - 36
$E_{(7,7)}$	66pq - 36p - 52q + 24

Theorem 4.1. Let $SD(Si_2C_3 - I(p,q))$ be the strong double graph of silicon carbide $Si_2C_3 - I(p,q)$. Then,

$$GA[SD(Si_2C_3 - I(p,q))] = 70pq - 32p - 44q + \frac{\sqrt{35}}{6}(24p + 32q - 36) + 28 + \sqrt{15} + \frac{4\sqrt{21}}{5}.$$

 $ABC[SD(Si_{2}C_{3}-I(p,q))] = (4pq + 4p + 8q + 2)\frac{2\sqrt{2}}{5} + (24p + 32q - 36)\sqrt{\frac{2}{7}} + (66pq - 36p - 52q + 24)\frac{2\sqrt{3}}{7} + 4\left(\frac{1}{3} + \sqrt{\frac{2}{5}} + \sqrt{\frac{8}{21}}\right).$ $F[SD(Si_{2}C_{3}-I(p,q))] = 6668pq - 1552p - 2328q + 192.$

D) SAMI

$$ISI[SD(Si_2C_3 - I(p,q))] = 241pq - 46p - \frac{206}{3}q + \frac{29}{10}.$$

 $\begin{aligned} PM_1[SD(Si_2C_3 - I(p,q))] &= 412876800(2pq + 2p + 4q \\ &+ 1)(6p + 8q - 9) \\ &(33pq - 18p - 26q + 12). \\ PM_2[SD(Si_2C_3 - I(p,q))] &= 31116960000(2pq + 2p \\ &+ 4q + 1)(6p + 8q - 9) \\ &(33pq - 18p - 26q + 12). \end{aligned}$

Proof: Consider the strong double graph of silicon carbide $SD(Si_2C_3 - I(p,q))$, that contains 20pq vertices and 70pq - 8p - 12q edges.

By using Equation (1) and Table 3, *GA* index is calculated as follows:

$$GA[SD(Si_2C_3 - I(p,q))] = |E_{(3,3)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_r d_s}}{d_r + d_s}$$

Page | 44

Journal of Medicinal and Pharmaceutical Chemistry Research

$$\begin{aligned} + |E_{(3,5)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_r d_s}}{d_r + d_s} \\ + |E_{(3,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_r d_s}}{d_r + d_s} \\ + |E_{(5,5)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_r d_s}}{d_r + d_s} \\ + |E_{(5,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_r d_s}}{d_r + d_s} \\ + |E_{(7,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{2\sqrt{d_r d_s}}{d_r + d_s} \\ GA[SD(Si_2C_3 - I(p,q))] \\ = (2)\frac{2\sqrt{9}}{3 + 3} + (4)\frac{2\sqrt{15}}{3 + 5} \\ + (4)\frac{2\sqrt{21}}{3 + 7} + (4pq + 4p + 8q \\ + 2)\frac{2\sqrt{25}}{5 + 5} + (24p + 32q - 36)\frac{2\sqrt{35}}{5 + 7} + (66pq \\ - 36p - 52q + 24)\frac{2\sqrt{49}}{7 + 7} \\ GA[SD(Si_2C_3 - I(p,q))] \\ = 70pq - 32p - 44q \\ + \frac{\sqrt{35}}{6}(24p + 32q - 36) \\ + 28 + \sqrt{15} + \frac{4\sqrt{21}}{5} \end{aligned}$$

SAMI

Via Equation (2) and Table 3, *ABC* index is calculated as:

$$ABC[SD(Si_{2}C_{3}-I(p,q))] = |E_{(3,3)}| \sum_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} \sqrt{\frac{d_{r}+d_{s}-2}{d_{r}d_{s}}} + |E_{(3,5)}| \sum_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} \sqrt{\frac{d_{r}+d_{s}-2}{d_{r}d_{s}}} + |E_{(3,7)}| \sum_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} \sqrt{\frac{d_{r}+d_{s}-2}{d_{r}d_{s}}}$$

$$\begin{aligned} + |E_{(5,5)}| &\sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}} \\ + |E_{(5,7)}| &\sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}} \\ + |E_{(7,7)}| &\sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \sqrt{\frac{d_r + d_s - 2}{d_r d_s}}. \\ ABC[SD(Si_2C_3 - I(p,q))] \\ &= (2) \sqrt{\frac{3 + 3 - 2}{9}} \\ + (4) \sqrt{\frac{3 + 5 - 2}{15}} \\ + (4) \sqrt{\frac{3 + 7 - 2}{21}} \\ + (4pq + 4p + 8q + 2) \sqrt{\frac{5 + 5 - 2}{25}} \\ + (24p + 32q) \\ - 36) \sqrt{\frac{5 + 7 - 2}{35}} + (66pq) \\ - 36p - 52q \\ + 24) \sqrt{\frac{7 + 7 - 2}{49}}. \end{aligned}$$

$$ABC[SD(Si_2C_3 - I(p,q))]$$

$$= (4pq + 4p + 8q + 2)\frac{2\sqrt{2}}{5}$$
$$+ (24p + 32q - 36)\sqrt{\frac{2}{7}}$$
$$+ (66pq - 36p - 52q + 24)\frac{2\sqrt{3}}{7}$$
$$+ 4\left(\frac{1}{3} + \sqrt{\frac{2}{5}} + \sqrt{\frac{8}{21}}\right).$$

By Equation (3) and Table 3, (*F*) index is calculated as follows:

$$F[SD(Si_2C_3 - I(p,q))] = |E_{(3,3)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2)$$

Page | 45

$$\begin{split} + &|E_{(3,5)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2) \\ + &|E_{(3,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2) \\ + &|E_{(5,5)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2) \\ + &|E_{(5,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2) \\ + &|E_{(7,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} (d_r^2 + d_s^2). \\ F[SD(Si_2C_3 - I(p,q))] \\ = (2)(9 + 9) + (4)(9 + 25) \\ + (4)(9 + 49) + (4pq + 4p) \\ + 8q + 2)(25 + 25) + (24p + 32q - 36)(25) \\ + 49) + (66pq - 36p - 52q) \\ + 24)(49 + 49). \\ F[SD(Si_2C_3 - I(p,q))] \\ = 6668pq - 1552p - 2328q \\ + 192. \end{split}$$

With the help of Equation (4) and the Table 3, *ISI* index is calculated as:

$$\begin{split} &ISI[SD(Si_2C_3 - I(p,q))] \\ &= |E_{(3,3)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ |E_{(3,5)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ |E_{(3,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ |E_{(5,5)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ |E_{(5,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} \\ &+ |E_{(7,7)}| \sum_{rs \in E[SD(Si_2C_3 - I(p,q))]} \frac{(d_rd_s)}{(d_r + d_s)} . \\ &ISI[SD(Si_2C_3 - I(p,q))] \\ &= (2)\frac{9}{6} + (4)\frac{15}{8} + (4)\frac{21}{10} \\ &+ (4pq + 4p + 8q + 2)\frac{25}{10} \end{split}$$

$$\begin{aligned} +(24p+32q-36)\frac{35}{12} \\ +(66pq-36p-52q) \\ +24)\frac{49}{14}. \end{aligned}$$

$$=(2pq+2p+4q)5+(6p+8q)\frac{35}{3} \\ +(33pq-18p-26q)7+\frac{29}{10}. \end{aligned}$$

$$ISI[SD(Si_2C_3-I(p,q))] \\ =241pq-46p-\frac{206}{3}q+\frac{29}{10}. \end{aligned}$$

D) SAMI

By using Equation (7) and Table 3, PM_1 index is calculated as:

$$\begin{split} &PM_{1}[SD(Si_{2}C_{3}-I(p,q))] \\ &= \left|E_{(3,3)}\right| \prod_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(3,5)}\right| \prod_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(3,7)}\right| \prod_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(5,5)}\right| \prod_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(5,7)}\right| \prod_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times \left|E_{(7,7)}\right| \prod_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} (d_{r}+d_{s}) \\ &\times (4pq + 4p + 8q + 2)10 \\ &\times (24p + 32q - 36)(12) \times (66pq - 36p \\ &- 52q + 24)(14). \\ &PM_{1}[SD(Si_{2}C_{3}-I(p,q))] \\ &= 412876800(2pq + 2p + 4q \\ &+ 1)(6p + 8q - 9) \\ &(33pq - 18p - 26q + 12). \end{split}$$

Via Equation (6) and Table 3, PM_2 index is calculated as follows:

$$PM_{2}[SD(Si_{2}C_{3}-I(p,q))] = |E_{(3,3)}| \prod_{rs \in E[SD(Si_{2}C_{3}-I(p,q))]} (d_{r}.d_{s})$$

$$\times (24p + 32q - 36)(35) \times (66pq - 36p - 52q + 24)(49). PM_2[SD(Si_2C_3 - I(p,q))] = 31116960000(2pq + 2p + 4q + 1)(6p + 8q - 9) (33pq - 18p - 26q + 12).$$

M. Shoaib Sardar et al.

Comparison

In this section, we compute a numerical and graphical comparison of topological indices based on the degree of the vertex (Table 4), which are computed above for the strong double graph of silicon carbide [$SD(Si_2C_3-I[p,q])$], where p = 1, 2, 3, ..., 10 and q = 1, 2, 3, ..., 10.

TABLE 4 Computation of indices for strong double graph of silicon carbide [SD(Si₂C₃-I[p,q])]

(n, q)	GA	ABC	F	ISI	PM_1	PM ₂
(p,q)	$[SD(Si_2C_3-I(p,q))]$	$[SD(Si_2C_3-I(p,q))]$	$[SD(Si_2C_3 - I(p,q))]$	$[SD(Si_2C_3-I(p,q))]$	$[SD(Si_2C_3 - l(p,q))]$	$[SD(Si_2C_3 - I(p,q))]$
(1,1)	49.25930985	28.19453971	2980.00	129.2333333	1.857945×10 ¹⁰	2.800526× 10 ¹²
(2,2)	238.4760545	126.1401315	19104.00	737.5666667	9.225319× 10 ¹²	1.390554× 10 ¹⁵
(3,3)	567.6927991	293.9342657	48564.00	1827.900000	8.922969×10 ¹³	1.344980× 10 ¹⁶
(4,4)	1036.909544	531.5769425	91360.00	3400.233333	4.026192×10 ¹⁴	6.068778× 10 ¹⁶
(5,5)	1646.126288	839.0681617	1.47492× 10⁵	5454.566667	1.258694× 10 ¹⁵	1.897261× 10 ¹⁷
(6,6)	2395.343033	1216.407923	2.16960×10 ⁵	7990.900000	3.159250× 10 ¹⁵	4.762015× 10 ¹⁷
(7,7)	3284.559778	1663.596227	2.99764×10⁵	11009.23333	6.844353×10 ¹⁵	1.031665× 10 ¹⁸
(8,8)	4313.776522	2180.633075	3.95904× 10⁵	14509.56667	1.333812× 10 ¹⁶	2.010487× 10 ¹⁸
(9,9)	5482.993267	2767.518463	5.05380×10 ⁵	18491.90000	2.399450× 10 ¹⁶	3.616750× 10 ¹⁸
(10,10)	6792.210012	3424.252394	6.28192×10 ⁵	22956.23333	4.054307× 10 ¹⁶	6.111156× 10 ¹⁸

Page | **47**

FIGURE 5 Graphical representation of indices for strong double graph of silicon carbide $[SD(Si_2C_3-I[p,q])]$

Conclusion

The findings of this study can help to understand the physical features and biological activities of silicon carbide. In this paper, we investigated the topological indices namely; Inverse sum indeg index (*ISI*), the first multiplicative-Zagreb index (*PM*₁), atom bond connectivity index (*ABC*), forgotten index (*F*), geometric arithmetic index (*GA*), the second multiplicative-Zagreb index (*PM*₂) of strong double and double graph of silicon carbide ($Si_2C_3-I(p,q)$). The comparison and geometric structure of attained results are presented numerically and graphically.

Acknowledgments

The authors would like to thank the reviewers for their helpful suggestions and comments.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

Orcid:

Muhammad Shoaib Sardar: https://www.orcid.org/0000-0001-7146-5639 Muhammad Asad Ali: https://www.orcid.org/0000-0002-9555-7885 Murat Cancan: https://www.orcid.org/0000-0002-8606-2274

References

[1] R.J. Wilson, *Introduction to graph theory*, New York: John Wiley and Sons, **1986**. [Google Scholar], [PDF]

D) SAMI

[2] M. Hu, H. Ali, M.A. Binyamin, B. Ali, J.B. Liu, *J. Math.*, **2021**. [Crossref], [Google Scholar], [Publisher]

[3] A. Yousaf, M. Nadeem, *Polycycl. Aromat. Compd.*, **2021**, *14*. [Crossref]

[4] D.K. Ch., M. Marjan, M. Emina, M. Igor, *Filomat*, **2019**, *33*, 683–698. [<u>Crossref</u>], [<u>Google Scholar</u>], [<u>Publisher</u>]

[5] M. Alaeiyan, M.S. Sardar, S. Zafar, Z. Zahid, *Int. J. Appl. Math. Machine Learning*, **2018**, *8*, 91-107. [Crossref], [Google Scholar], [Pdf]

[6] G. Hong, Z. Gu, M. Javid, H.M. Awais, M.K. Siddiqui, *IEEE access*, **2020**, *8*, 68288-68300. [Crossref], [Google Scholar], [Publisher]

[7] B. Furtula, D. Vukicevic, J. Math. Chem.,
 2009, 46, 1369-1376. [Crossref], [Google Scholar], [Publisher]

[8] K.C. Das, I. Gutman, B. Furtula, *Filomat.*, 2012, 733-738. [Crossref], [Google Scholar], [Publisher]

[9] B. Furtula, I. Gutman, *J. Math. Chem.*, 1184-1190, **2015**. [Google Scholar], [Publisher]

[10] K. Pattabiraman, *AKCE Int. J. Graphs Comb.*, **2018**, *15*, 155-167. [Crossref], [Google Scholar], [Publisher]

[11] P. Ali, S.A.K. Kirmani, O.A. Rugaie, F. Azam, *Saudi. Pharm. J.* 2020, *28*, 1093-1100.[Crossref], [Google Scholar], [Publisher]

[12] R. Kazemi, Discret. Appl. Math., 2016, 198, 147-154. [Crossref], [Google Scholar], [Publisher]

[13] M. Eliasi, A. Iranmanesh, I. Gutman, *MATCH Commun. Math. Comput. Chem.*, **2012**, *68*, 217-230. [Google Scholar], [PDF]

[14] M.A. Ali, M.S. Sardar, I. Siddique, D. Alrowaili, *J. Chem.*, **2012**. [Crossref], [Google Scholar], [Publisher]

[15] M.S. Sardar, S. Zafar, Z. Zahid, M.R. Farahani, S. Wang, S. Naduvath, *Southeast Asian Bull. Math.*, **2021**, *44*, 119-129. [Google Scholar], [PDF]

[16] M.S. Sardar, I. Siddique, D. Alrowaili, M.A. Ali, S. Akhtar, *J. Math.*, **2022**. [Crossref],[Google Scholar], [Publisher]

[17] M.S. Sardar, X.F. Pan, D. Alrowaili, I. Siddique, *J. Math*, **2021**. [Crossref], [Google Scholar], [Publisher]

[18] M.S. Sardar, I. Siddique, F. Jarad, M. A. Ali,E.M. Turkan, M. Danish, *J. Math.*, **2022**.[Crossref], [Google Scholar], [Publisher]

[19] M. Danish, M.A. Ali, M.W. Tasleem, S.R. Rajpoot, S. Tasleem, M. Shahzad, *Int. J. Res. Rev.*, **2021**, *2*, 531-541. [Pdf], [Google Scholar], [Publisher]

[20] X.L. Wang, J.B. Liu, A. Jahanbani, M.K. Siddiqui, N.J. Rad, R. Hasni, *J. Math*, **2020**. [Crossref], [Google Scholar], [Publisher]

[21] E. Munarini, C.P. Ci, A. Scagliola, N.Z. Salvi, *Discret. Math.*, **2008**, *308*, 242-254. [Crossref], [Google Scholar], [Publisher]

[22] T. A. Chishti, H. A. Ganie, S. Pirzada, J. Discret. Math. Sci. Cryptogr., 2014, 17, 311-319. [Crossref], [Google Scholar], [Publisher]

[23] Y. Gao, M.R. Farahani, W. Nazeer, *Chem. Meth.*, **2018**, *2*, 39-46. [Crossref], [Google Scholar], [Publisher]

[24] S.S. Shirkol, P.P. Kumbargoudra, M.M. Kaliwal, *J. Shanghai Jiaotong University*, **2021**, *17*, 10-18. [Google Scholar], [Pdf]

[25] D. Afzal, S. Hussain, M. Aldemir, M. Farahani, F. Afzal, *Eurasian Chem. Commun.*, **2020**, *2*, 1117-1125. [Crossref], [Google Scholar], [Publisher]

[26] S. Hussain, F. Afzal, D. Afzal, M. Farahani, M. Cancan, S. Ediz, *Eurasian Chem. Commun.*,

2021, *3*, 180-186. [Crossref], [Google Scholar], [Publisher]

[27] D.Y. Shin, S. Hussain, F. Afzal, C. Park, D. Afzal, M.R. Farahani, *Frontier Chem.*, **2021**, *8*, 613873-61380. [Crossref], [Google Scholar], [Publisher]

[28] W. Gao, M.R. Farahani, S. Wang, M.N. Husin, *Appl. Math. Comput.*, **2017**, *308*, 11-17. [Crossref], [Google Scholar], [Publisher]

[29] H. Wang, J.B. Liu, S. Wang, W. Gao, S. Akhter, M. Imran, M.R. Farahani, *Discrete Dyn. Nat. Soc.*, **2017**, *2017*, Article ID 2941615. [Crossref], [Google Scholar], [Publisher]

[30] W. Gao, M.K. Jamil, A. Javed, M.R. Farahani, M. Imran, *UPB Sci. Bulletin B.*, **2018**, *80*, 97-104. [Crossref], [Google Scholar], [Publisher]

[31] S. Akhter, M. Imran, W. Gao, M.R. Farahani, *Hacet. J. Math. Stat.*, **2018**, *47*, 19-35. [Crossref], [Google Scholar], [Publisher]

[32] X. Zhang, X. Wu, S. Akhter, M.K. Jamil, J.B. Liu, M.R. Farahani, *Symmetry*, **2018**, *10*, 751. [Crossref], [Google Scholar], [Publisher]

[33] H. Yang, A.Q. Baig, W. Khalid, M.R. Farahani, X. Zhang, *J. Chem.*, **2019**. [Crossref], [Google Scholar], [Publisher]

[34] L Yan, M.R. Farahani, W. Gao, *Open J. Math. Sci.*, **2018**, *2*, 323-337. [Crossref], [Google Scholar], [Publisher]

[35] M. Imran, M.K. Siddiqui, S. Ahmad, M.F. Hanif, MH Muhammad, M.R. Farahani, *J. Discret. Math. Sci. Crypt*ogr., **2018**, *22*, 1229-1248. [Crossref], [Google Scholar], [Publisher]
[36] S. Ahmad, H.M.A. Siddiqui, A Ali, M.R. Farahani, M. Imran, I.N. Cangul, *On J. Discret. Math. Sci. Cryptogr.*, **2019**, *22*, 1151-1164. [Crossref], [Google Scholar], [Publisher]

[37] Z. Shao, A.R. Virk, M.S. Javed, M.A. Rehman, M.R. Farahani, *Eng. Appl. Sci. Lett.*, **2019**, *2*, 01-11. [Crossref], [Google Scholar], [Publisher]

[38] M. Cancan, S. Ediz, M. Alaeiyan, M.R. Farahani, *J. Inf. Opt. Sci.*, **2020**, *41*, 949-957. [Crossref], [Google Scholar], [Publisher]

[39] M. Cancan, S. Ediz, M.R. Farahani, *Eurasian Chem. Commun.*, **2020**, *2*, 641-645. [Crossref], [Google Scholar], [Publisher]

[40] Z. Mokhayeri, *Adv. J. Chem.*, **2022**, *4*, 104-112. [Crossref], [Publisher]

[41] B. Baghernejad, N.S. Soltani. *Asian J. Green Chem.*, **2022**, *6*, 166-174. [Crossref], [Publisher]

[42] E.S. Whaib, M.A. Mousa, *Chem. Methodol.*, **2022**, 6, 783-789. [Crossref], [Pdf], [Publisher]

[43] N. Farhami, *J. Appl. Organomet. Chem.*, **2022**, *2*, 163-172. [Crossref], [Pdf], [Publisher]

[44] M. Alaeiyan, C. Natarajan, G. Sathiamoorthy, M.R. Farahani, *Eurasian Chem. Commun.*, **2020**, *2*, 646-651. [Crossref], [Google Scholar], [Publisher]

[45] M. Jafari, *Prog. Chem. and Biochem. Res.*, **2022**, 5, 115-124. [Crossref], [Google Scholar], [Publisher]

[46] M. Alaeiyan, F. Afzal, M.R. Farahani, M.A. Rostami, *J. Inf. Opt. Sci.*, **2020**, *41*, 933-939.
[Crossref], [Google Scholar], [Publisher]
[47] M. Cancan, S. Ediz, S. Fareed, M.R.

Farahani, *J. Inf. Opt. Sci.*, **2020**, *41*, 925-932. [Crossref], [Google Scholar], [Publisher]

[48] D. Afzal, S. Ali, F. Afzal, M. Cancan, S. Ediz,
M.R. Farahani, J. Discret. Math. Sci. Cryptogr., **2021**, 24, 427-438. [Crossref], [Google Scholar], [Publisher]

How to cite this article: Muhammad Shoaib Sardar^{*}, Muhammad Asad Ali, Faraha Ashraf, Murat Cancan. On topological indices of double and strong double graph of silicon carbide Si₂C₃-I[p,q]. *Journal of Medicinal and Pharmaceutical Chemistry Research*, 2023, 5(1), 37-49.

Copyright © 2023 by SPC (Sami Publishing Company) + is an open access article distributed under the Creative Commons Attribution License (CC)BY) license permits (https://creativecommons.org/licenses/by/4.0/), which unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.