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Metric dimension dim(G) and portion dimension pd(G) are usually 
related as pd(G)≤dim(G)+1. However, if the partition dimension is 
significantly smaller than the metric dimension, then it is termed 
as discrepancy. This paper mainly deals with metric dimension 
and partition dimension of tessellation of plane by boron 
nanosheets. It has been proved that there is a discrepancy 
between the mentioned parameters of the boron nanosheets. 
Moreover, some induced subgraphs of the stated sheets have 
been considered for the study of their metric dimension. 
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Introduction 

Nanotechnology and nano science are the use 

of significantly small objects and are 

applicable to other scientific fields. New 

materials and de-vices are created with the 

help of nanotechnology with a wide range of 

applications in different areas such as 

electronics, computer, and medicines. People 

are thinking that the nanotechnology will 

revolutionize the 21st century just like 20th 

century which is revolutionized by 

communication and entertainment 

technology. Different nanotubes are being 

used in this technology. A nanotube is formed 

by rolling a plane nanosheet in cylindrical 

way. Some important nano structures are 

boron α-nanotubes, boron α-β-naotubes, 

carbon nanotubes, and boron triangular 

nanotubes.  

Recently, pure boron triangular nanotubes 

have been discovered and their discovery has 

challenged the dominance carbon nanotubes. 

A boron triangular nanotube was first 

constructed from triangular sheet in 2004, [2, 

17]. If we insert exactly one atom into each 

hexagon of a hexagonal sheet, then we will 

have a boron triangular nanotube. The 

scientists are of the opinion that these tubes 

are much better than the hexagonal 

nanotubes [2, 25]. Peter Miller [17] believed 

that if carbon nanotubes were shining on the 

horizon in 2007, then it would be possible 

that the year 2008 was be the time for boron 

nanotubes to shine. Sohrab Ismail-Beigi [26] 

predicted that we are heading towards a 

superconducting nano computer with boron 

wiring, and after some times this prediction 

comes true when scientists would be able to 

make a smallest superconductor by using 

molecular superconducting boron wires. 

Special boron sheets have been constructed 

from the old hexagonal sheets by inserting 

exactly one atom into the center of some 

particular hexagons and the said special 

http://echemcom.com/
https://orcid.org/0000-0002-7507-1212
https://orcid.org/0000-0003-1794-6460
https://orcid.org/0000-0003-2969-4280


P a g e  | 1065   M.A. Mohammed et al. 

sheets are known as boron α-sheet and boron 

α-β-sheet [15, 25]. 

A path with minimum length between 

u,v∈V(G) is the shortest path and the length is 

the distance d(u,v), of G. Let W={w1,w2,…,wk} 

be a set of G whose vertices are arranged in a 

specific order and let v be a vertex of G. A 

vector    1 2  | ( ( , ),  , ,.....,  ( , ))kr v W d v w d v w d v w  with 

k components gives the representation of v 

with respect to W. 

If for any vertices t≠p∈V(G), r(t|W)≠r(p|W) 

with respect to W, then W is called a resolving 

set or locating set for G [3]. A set which 

resolves all elements of V(G) is a basis for G 

and its cardinality is the metric of G, denoted 

by dim(G). The readers are invited to consider 

the following articles for detailed study [4,5, 

11, 12, 16, 20, 23, 24, 27, 29-39]. 

A given arranged set of vertices 

W={w1,w2,…,wk} of a graph G, the ith 

component of the vector r(v|𝛱)=0↔v=wi. 

Thus, one can easily show that W is a basis set 

by verifying only that for all x≠y∈V(G)\W, 

r(x|W)≠r(y|W)  

The following lemma proposed us the way of 

choosing the elements of the basis: 

Lemma 1.1. [28] Let W be a resolving set for a 

connected graph G and u,v∈V(G) If 

d(u,w)=d(v,W) for all vertices w∈V(G)\{u,v}, 

then {u,v}⋂W≠Ø. 

If Gn:Σ=(Gn)n≥1 is a family of connected 

graphs with order |V(Gn)|=Ω(n) and 

limn→∞Ω(n)=∞, this family will have metric 

dimension bounded by a positive constant  a 

i.e. dim(Gn)≤a,∀n≥1, and if no such number 

exists, then dim(Gn) is unbounded. If 

(Gn)=a,∀n≥1, then dim(Gn) is constant [13]. 

Let S⊂V(G) and a vertex v∈V(G), the 

distance between point and a set is defined as 

d(v,S)=min{d(v,x):x∈S}. A p-partition 

𝛱=(S1,S2,…,Sp) of V(G) will give us 

representation 

r(v|𝛱)=(d(v,S1),d(v,S2),…,d(v,Sp))
 

of v with 

respect to 𝛱. If all the vectors r(v|𝛱) are 

distinct for every v∈V(G), then  𝛱 is called a 

resolving partition. One such partition with 

least cardinality is termed as the partition 

dimension of G, denoted by pd(G). Let 

𝛱=(S1,S2,…,Sp) be partition of V(G) arranged in 

a specific order, and if u∈Si, v∈Sj such that 

1≤i,j≤k and i≠j, then r(u|𝛱)≠r(v|𝛱) since 

d(u,Si)=0 but d(v,Si)≠0 . If the vertices of the 

same partite set have different 

representation, then this will guaranty that 

the partition is resolving. 

When d(u,Si)≠d(v,Si) then the class Si 

distinguishes vertices u and v. 

The following Lemma suggests us the way of 

choosing the elements of partite sets [7]. 

Lemma 1.2. [7] Let 𝛱 be a resolving partition 

of V(G) and u,v∈V(G). If d(u,w)=d(v,w) for all 

vertices w∈V(G)\{u,v}, then u and v belong to 

different classes of 𝛱. 

The researchers are interested in finding 

the relation between partition dimension and 

metric dimension. One of the most popular 

and useful relations between the said 

parameters is given in [7] as follows: 

pd(G)≤dim(G)+1. 

However, the partition dimension is 

significantly smaller than metric dimension, 

and if this happens for certain families of 

graphs then it is termed as a discrepancy 

between these two parameters. 

These notions have application in diverse 

areas of science and technology, for the 

representation of chemical compounds in 

chemistry [5, 11, 30], pattern recognition and 

image processing [16, 14]. 

For the study of discrepancies between 

these two distance-based parameters, the 

readers are suggested to consider these 

articles [16, 19, 21-24]. These articles 

motivated us to consider some more graphs 

generated by tiling of the plane (boron 

nanotubes) to check the discrepancy between 

these parameters. 

A carbon nanosheet is a sheet on plane 

that is generated by hexagons with n rows 

and m columns. If we roll up these sheets and 

merge the last column vertices by 

corresponding first column vertices, then a 
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nanotube of order n×m is formed. A boron α-

nanotube and α-β-nanotube can be 

constructed easily by inserting a single vertex 

into the center of some particular hexagons 

and if an atom is inserted into each hexagon 

of hexagonal tube then the resulting tube is 

termed as triangular nanotube. These 

nanotubes are of order n×m. 

Some of the important components of the 

graph are vertices and edges which help to 

understand the properties of graph in a 

better way by labeling them. 

Since past decades, the researchers have 

been highly motivated to consider the nano 

structures for their studies and investigated 

many graph theoretic properties, some of 

which are listed as topological descriptors, 

bipartite edge frustration, group symmetries 

and chromatic polynomials [1, 9, 10]. 

Recently, some distance-based parameters 

have been studied in [19, 21, 22].  

All the aforementioned properties of nano 

structures motivated us to consider boron 

nano structures to study two fundamental 

and widely applicable parameters of the 

graphs termed as metric dimension and 

partition dimension. 

Results and discussion 

This paper delved into two highly applicable 

parameters namely partition dimension and 

metric dimension of newly defined important 

structures termed as boron α-sheet and 

boron α-β-sheet. These structures have 

infinite elements in their metric basis but 

finite elements in their resolving partition set.  

Some induced subgraphs have also been 

considered in relation to studying these 

structures and their metric basis. We found 

that some of them have fixed metric basis 

while the other have variable metric basis 

that vary with change of the order of the 

structures. 

Following lemma shows that metric basis 

of infinite boron α-sheet and boron α-β-sheet 

has infinite number of elements. 

 

Lemma 2.1. The infinite boron α-sheet and 

boron α-β-sheet have infinite metric basis, i.e., 

dim(boron α-sheet)=dim(boron α-β-sheet)=∞. 

Proof. Figure 1 represents boron α-sheet 

showing two vertices labeled by x,y and some 

vertices z in this graphs with the condition 

d(x,z)=d(y,z). Suppose there is finite number 

of elements in the metric basis β of boron α-β-

sheet. There are two vertices x,y and a subset 

A that contains all such elements of graphs 

which satisfies the condition, d(x,z)=d(y,z)≤l, 

where l∈N, a set of natural numbers such that 

B⊂A. This leads to the conclusion that 

d(x,z)=d(y,z) for all z∈B, which produces a 

contradiction. The proof for second boron 

sheet can be established in similar fashion.  

Following lemma is providing good bounds of 

resolving partition of boron α-sheet and 

boron α-β-sheet. 

Lemma 2.2. We have pd(boron α-sheet)=3 

and 3≤pd(boron α-β-sheet)≤4. 

 

FIGURE1 Bold vertices have same distances 
from x and y 

Proof. A graph G has only elements in its 

resolving partition if it is a path graph and 

this result was proved by Chartr and et al. [6]. 

This result holds true even for infinite path. 

This shows that pd(boron α-sheet) and   

pd(boron pd(sheet) is bounded below by 3.s. 

A resolving partition comprising three 

elements of boron α-sheet and a resolving 

partition comprising four elements of Boron 

α-β-are given in Figure 2. This shows that 
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pd(boron α-sheet)=3 and pd(boron α-β-sheet) 

is bounded below by 3 and bounded above by 

4.  

If every face of a finite connected edge 

crossing free graph is bounded by 4k-cycle 

having unit length, then that graph is termed 

as k-polyomino system or one can say that it 

is the union of edge connected 4k-cycles. 

There are many induced subgraphs of the 

stated boron nano sheets, some of which are 

given in Figure 3. An induced subgraph AAn is 

the union of 6-cycles whose edges are 

connected. Also, AA’n is the pair wise zig-zag 

chain induced by C3 with 2n pairs; the graph  

AA”n is defined as an edge connected union of 

C6 and (n-1)P3. Figure 4 represents an 

induced subgraph XXn defined as an edge 

connected union n groups one hexagon and 

two W6 (wheel of length 7) alternately. Figure 

5 represents a polyomino chain of 6-cycles 

and is denoted by GGn. Note that these 

induced subgraphs are of order k. 

In the next theorem, the metric dimension 

of some afore mentioned induced subgraphs 

has been studied and proved that there exist 

induced subgraphs of these boron nano 

sheets, some of which have metric dimension 

depending upon n and others have a constant 

metric dimension. 

Theorem 2.1. i) For every integer n≥1, 

dim(AAn)=2. 

ii) For every integer n≥2, dim(AA’n)= 

dim(AA”n)=n. 

 

FIGURE 2 A boron α-sheet with 3-partition 
and a boron α-β-sheet with 4-partition. 

Proof. i) The metric bases of induced 

subgraph AAn will contain more than two 

elements (vertices) because a connected 

graph G has metric basis containing only one 

element if and only if it is Pn as proved in [5]. 

In AAn, ui and vi, where 1 
2

kk   are 

representing the vertices of C6 that are on the 

upper half and lower half of C6, respectively 

as shown in Figure 3. For dim(AAn)≤2, one has 

to verify that W={v1,u2} resolves V(AAn) and to 

do this the unique representation of all the 

elements of V(AAn)\W with respect to W are 

required. They are given below  

       1 2| 1,1 ,  | 3,1 ,

( | ) (   1  ,    1  ), for 3 .
2

( | ) (    2,  ), for 3 .
2

i

i

r u W r v W

k
r v W i i i

k
And r u W i i i

 

    

   

 

From the discussions given above we have 

dim(AAn)=2. 

 

FIGURE 3 Some induced subgraphs of boron 

sheets 

In Dn, vj and uj, 1 
2

kk   represents the 

vertices of C8 or C6 that lies on upper and 

lower half, respectively as shown in Figure 3. 

For dim(Dn)≤2, it suffices to prove that the set 

W={v1,u2} resolves V(Dn). So for this, unique 

represents for all elements of V(Dn)\W1 with 

respect to W1 are required i.e. 

2 1 1 1

j 1

1

( | ) (1,3),  ( | ) (1,1)

k
r(v  | W ) ( j  1  ,  j  1  ),  for 3 j

2

(  | ) ( ,     2), for 3 .
2

j

r v W r u W

k
And r u W j j j

 

    

   
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All the above discussions lead us to conclude 

that dim(Dn)=2. 

ii) In  AA’n, there exists two vertices t and p 

that have the same distances to all rest of the 

vertices of  AA’n other than q as shown in 

Figure 3. So the vertex q is distinguishing the 

vertices  t and p that are in the first pair of C3 

from left to right. If q is not part of any 

resolving set with least number of elements 

of AA’n. This clearly indicates that any 

minimum resolving set of  AA’n must contain 

at least one of t,p. In this manner, a resolving 

set with least number of elements can be 

formed by selecting exactly one third degree 

vertex of kind t from every quadruple of C3 of  

AA’n (in at least 2n ways) and this will form a 

metric basis, leading to prove the dimension 

of this subgraph. 

The result can be followed by stating that 

there are n! ways to arrange these vertices. 

The metric basis for the graph AA’n can be 

formed in similar manners by selecting at 

least one of the vertices a,b,c and d. Moreover, 

there are n!4n minimum resolving sets that 

lead to possibly no  metric basis.  

 

FIGURE 4 The induced subgraph  XXn of 

boron α-sheet 

Theorem 2.2. For every n≥1, dim(XXn)=2n+1. 

  

Proof. The graph  XXn has divided into groups 

comprising three consecutive hexagons and 

each group is labeled by numbers 1 to n from 

left to right as shown in Fig. 4. One can easily 

verify that dim(XX1)=3 with minimum 

resolving set {a,b,y}. Now dim(XXn)=2n+1 for 

n≥2 can easily be proven by double 

inequality. 

The upper bound can be achieved by 

forming a resolving with 2n+1 number of 

elements in it. This can be constructed in the 

following fashion: 

First of all, consider the first group of three 

hexagons labeled as 1 and select a,c and y 

type vertices and then select only two c and y 

type vertices from each group of hexagons 

labeled by 2 to n from left to right. 

If any pair of vertices of XXn has the same 

distance to some vertex other Ἡ, then this 

pair can be distinguished by some of the 

remaining vertices of Ἡ. This argument helps 

to shows that dim(XXn)≤2n+1, for n≥1. To 

prove that dim(XXn)≥2n+1 for n≥1, one can 

verify that every group of three hexagon 

labeled by 2 to n contributes three vertices to 

the resolving set of XXn while the first group 

labeled by 1 contributes only two vertices. 

There are two pair of vertices of type c and x, 

and of type y and g lying in the second and 

the third hexagons, respectively, of first group 

of three hexagons labeled by 1 that 

distinguishes the pair of vertices of type d 

and h common in second-third hexagons from 

left to right. Any pair of vertices of the third 

hexagons can easily be distinguished in the 

similar fashion instead of the pair of vertices 

lying in the first hexagon from left and the 

vertices of type b,f that can only be identified 

by c and x type vertices lying in the second 

hexagon from left.  

This implies that any minimum resolving 

set of XXn contains at least two vertices from 

every group of three hexagons labeled by 2 to 

n from left to right. 

Now assign a binary variable Xi to ith group 

of hexagons having value 1 if it contributes a 

vertex in the resolving set Ἡ of  XXn and 0 if 

does not, one can conclude: 

1 2 3

3 4

4 5 1

3;  4;

4;

...

4  4n n

X X X

X X

X X X X

  

 

   

 

After adding above inequalities, we get: 

2 3 4 12 2 ... 2 4( 2).n nS X X X X X n         
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Hence we get 

2

1

2   2 6 4 8 10.
n

i n

i

X S X X n


       H
 

This shows that |Ἡ|≥2n+1, dim(XXn)≥2n+1, 

and the proof is complete.  

Theorem 2.3. For every n≥2, dim(GGn)=n+1.  

Proof. The graph  GGn has divided into pair of 

hexagons labeled as 1,2,3,…,n from left to 

right as shown in Figure 5. One can easily 

verify that dim(GG1)=2 with minimum 

resolving set {b,d}. Now dim(GGn)=n+1, for 

n≥2 can be proven by double inequality. 

 

FIGURE 5 The induced subgraph  GGn of 
boron sheet 

The upper bound can be achieved by 

forming a resolving B with n+1 number of 

elements in it. This can be constructed in the 

following fashion: 

●For n even, select vertices from pair of 

hexagons labeled as 1 of type b and d, from 

every pair of the upper hexagons labeled as 

2,4,…,n select a p type vertex and select a d 

type vertex from each pair of lower hexagons 

of  GGn labeled as 3,5,…,n-1 from left to right. 

●For n odd, select a pair of vertices of types b 

and d from hexagon labeled by 1 and a p type 

vertex from the pair of upper hexagons 

labeled as 2,4,…,n-1 in  GGn and a d type 

vertex from pair of lower hexagons labeled as  

3,5,…,n from left to right in  GGn. If any pair of 

vertices of  GGn has the same distance to some 

vertex B, then this pair can be distinguished 

by some of the remaining vertices of B. This 

argument helps to shows that dim(GGn)≤n+1, 

for n≥1. Now dim(GGn)≥n+1, for n≥1 one can 

easily verify that the first hexagon of  GGn 

contributes at least two vertices to every 

resolving set and every pair of hexagons 

labeled as 2,3,…,n from left to right in the pair 

wise zig-zag will contribute at least one 

element to every resolving set of  GGn. The 

pair of vertices of type b and d distinguishes 

all vertices of pair of hexagons labeled by 1 

from left to right except a p type vertex lying 

in the third hexagon. The pair of vertices of 

type  p and s lying in the third hexagon and 

the pair vertices of type v and u lying in 

fourth hexagon of  GGn distinguishes the pair 

of vertices of type q and y lying in third 

hexagon from left to right. Therefore, one of 

them must be part of the minimum resolving 

set and one can easily establish the argument 

in the similar fashion for the remaining vertex 

pairs lying in the third and fourth hexagon. 

This shows that every pair of consecutive 

hexagons of  GGn must contribute at least one 

vertex in any resolving set with minimum 

number of elements. Now assign a binary 

variable gi to ith hexagon having value 1 if it 

contributes a vertex in the resolving set B of  

GGn and 0 if does not, one can conclude: 

1 2 3

3 4

4 5

1

2;  1; 

1;

1

...

  1.n n

g g g

g g

g g

g g

  

 

 

 

 

After adding the above inequalities, we get: 

2 3 4 12 2 2     2.n nS g g g g g        

Hence  

2

1

2   2 2 2 1 2
n

i n

i

g S g g n


        B

 

This shows that |B|≥n+1, dim(GGn)≥n+1 and 

the proof is complete. ■ 

Conclusion  

In this paper, the existence of discrepancy 

between pd(G) and dim(G) has been proved. 

It has also been proved that there exist some 

subgraphs of the mentioned sheets with 

constant dim(G) while the other with 

unbounded dim(G). 
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