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The eccentric connectivity index ECI is a chemical structure
descriptor that is currently being used for modeling of
biological activities of a chemical compound. This index has
been proved to provide a high degree of predictability
compared to some other well-known indices in case of
anticonvulsant, anti-inflammatory, and diuretic activities. The
ECI of an infinite class of 1-polyacenic (phenylenic) nanotubes
has been recently studied. In this study, we computed Ediz
eccentric index and augmented eccentric connectivity index of
Titania nanotube TiOz2[m;n].
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Introduction

vertex at a time. Some of the famous

A basic concept of chemistry is that the
properties/activities of a molecule depend
upon its structural characteristics. Molecular
graphs can be used to model the chemical
structures of molecules and molecular
compounds, by considering atoms as vertices
and the chemical bonds between the atoms as
edges [1-3]. In the study of quantitative
structure-property and structure-activity
relationships (QSPR/QSAR), the topological
indices are very helpful in detecting the
biological activities of a chemical compound
[4-7].

A topological index is a numerical graph
is used to correlate the
chemical structure of a molecule with its
physicochemical properties and biological
activities. Generally, topological indices are
generations:
generation topological indices are integer
numbers obtained by simple operations from
the local vertex invariants involving only one

invariant that

classified into five first-
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topological indices of this class are Wiener
index, Hosoya index, and centric indices of
Balaban [8]. Second-generation topological
indices are real numbers based on integer
graph properties. These
obtained via the structural operations from

indices were
integer local vertex invariants, involving
more than one vertex at a time. Some
examples of this class include molecular
connectivity indices, Balaban ] index, bond
connectivity indices, and kappa shape indices
[8]. Third-generation topological indices are
real numbers which are based on local
properties of the molecular graph. These
indices are of recent introduction and have
very low degeneracy. These are based on
information theory applied to the terms of
distance sums or on newly introduced
nonsymmetrical matrices. Some examples
include information indices [9], the hyper-
Wiener index [8], the Kirchhoff index [10],
and electrotopological state indices [4].
Recently, fourth- and fifth-generation
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indices are placed as new
topological Fourth-
generation topological indices are of highly
discriminating fourth-
generation topological indices are including
connectivity [11],
superaugmented eccentric connectivity index
[12], and  superaugmented eccentric
connectivity topochemical [13].
Detour matrix-based adjacent path eccentric
distance sum indices belong to the fifth-
generation topological indices [14].

Let G=(V, E) be a molecular graph, where V
(G) is a non-empty set of vertices and E(G) is
a set of edges. The cardinality of vertex set is
said to be order of graph G, denoted by |V(G)|
and the cardinality of edge set is said to be
the size of graph and is denoted by |E(G)|.
Number of edges incident with vertex v is
called the degree of vertex. The distance from
u to v, where u;veV (G) is defined as the

topological
generations indices.
power. Some

the eccentric index

indices

length of the shortest path from u to v,
denoted by d(u;v). The eccentricity of a
vertex V€V (G), denoted by ((v), is the
maximum distance between a vertex to all
other vertices i.e.,

ecc(v) =g(v) =max{d(u,v):ueV(G)}.

The eccentric connectivity index of a graph G
was proposed by Sharma, Goswami and
Madan in [15], as

§°G)= 2, dev). ()
veV (G)

Gupta, Singh and Madan in [16] introduced
the connective eccentric index for a graph

cc@)= > CIURY

veve) €(V)

Recently, S. Ediz defined Ediz eccentric
connectivity index in [17], denoted by
E£°(G) and is defined as
S
"e)= Y 5 @)

vev (G) € V)
where Sy is the sum of degrees of all vertices
adjacent to vertex v [18, 19]. A generalization
of eccentric connectivity index, known as
augmented eccentric connectivity index of a
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graph G was proposed by Dureja and Madan
in [20],
A ~C _ Mv
G)= 3 - @
vv ) (V)
where M, is the product of degrees of all
vertices adjacent to vertex v. For further

details about these new connectivity indices
see [21- 27].

Discussion and main results

In this work, we discuss the molecular graph
of titania nanotubes TiOz[m;n], where m
denotes the number of octagons in a column
and n denotes the number of octagons in a
row of the titania nanotube. The titanium
nanotubular materials, called titania by a
generic name, are of high interest metal oxide
their widespread
applications in production of catalytic, gas-
sensing and corrosion resistance materials
[28]. As a well-known semiconductor with
numerous technological applications, Titania
(TiOg) comprehensively
studied The TiO>
nanotubes were systematically synthesized
using different methods and carefully studied
as prospective technological materials [29-
39].

TiO2[m;n] is shown in Figure 1. In this
section, we computed the Ediz eccentric
connectivity index and augmented eccentric
connectivity index of TiO2[m;n].

Consider the molecular graph of Titania
nanotube TiOz[m;n], where m denotes the
number of octagons in a row and n denotes
the number of octagons in a column of the
titania nanotube. This structure consist of
6m(n+1) vertices. Figure 1 reveals the general
representation of Titania nanotube TiOz[m;n].
To compute the Ediz eccentric index and
Augmented eccentric connectivity index of
the Titania nanotube,
partition of the Titania nanotube TiOz[m;n]
based on degree sum and degree
multiplication  of  neighbors  vertices,
respectively. As seen in Figure 1, there are

substances due to

nanotubes are

in materials science.

we need vertex
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2mn+4m vertices of degree 2, 2mn vertices of
degree 3, 2m vertices of degree 4 and 2mn
vertices of degree 5. We denote the set of
vertices of degree two, degree three, degree
four and degree five by V, V3, V4 and Vs,
respectively. The graph of titania nanotube
has 2n+2 rows and m columns. For each it
row and jth column, we represent the vertices
of graph by uj, vi, x; and yj as illustrated in
Figure 2.

Top view

LHOLTOLTOLTTOLTOLTK

Across view

FIGURE 1 The molecular graph of titania
nanotube TiOz[m;n]

To compute the sum of degrees of all
neighbors of vertices in the Titania nanotube
TiO2[m;n], we presented the vertex partitions
based on degree sum with their cardinalities
in Table 1.

To compute the multiplication of degrees
of all neighboring vertices in the Titania
nanotube TiO2[m;n],we presented the vertex
partitions based on product of degrees, with
their cardinalities in Table 2.

Theorem 1. Let TiOz[m;n] be the graph of

titania nanotube, then for __ {m—Z J we have
4

E£C(TiO,[m, n]) =38n+ 24,
AZC(TiO,[m, n]) = 258n —1.
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TABLE 1 Vertex partition based on degree
sum of neighbor vertices

S, where ve Number of
V(TiO2z[m;n]) Vertices
8 2m
9 4m
10 2mn
12 2m
13 2mn-2m
14 2m
15 2mn-2m

TABLE 2 Vertex partition based on product
of degree of neighbor vertices

bl uIElE Ui Number of Vertices

V(TiOz[m;n])
16 2m
20 24m
24 2m
72 2m
25 2mn
108 2mn-2m
100 2m
125 2mn-2m

Hal BN
I/ \”'é‘ag{i\

N/ 7N
TN Q"\
S ot

FIGURE 2 Representation of vertices of
titania nanotube TiOz[m;n]

Proof: The eccentricity of every vertex in
every row is 2m. So, from Table 1 we have

E ~c Sv
¢ (G) VEVE(:G) =)
_ 2m(8) N 4m(9) N 2m(12) N 2mn(10) . 2m(14)
2m 2m 2m 2m 2m
N (2mn -2m)(13) N (2mn —2m)(15)
2m 2m

=38n+24.
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From Table 2, we have
M 2m(16) 2m(24
sry- Y My 2mae)  2m24)
vV (6) e(v) 2m 2m
N 2m(72) N 2mn(25) . 2m(100) N 2m(20)
2m 2m 2m 2m
N (2mn —2m)(108) . (2mn —2m)(125) o580 -1,
2m 2m -

Theorem 2. Let TiOz[m;n] be the graph of
titania nanotube, where m=2p and p=2n then
we have

. 144p
Esomiomn))=————F
¢~ (TiG,[m, n]) 3p+2n+1

. 176p
ALS(Tio[mn]) = ———-
¢~ (TiO,[m,n]) 3p+2n+1

+38n+6,

+258n —45.

‘¢4ﬁ?*ﬂﬁ»
L ITNNS TN
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FIGURE 3 Shortest paths with maximal
length in TiO2[m;n]

Proof: In this case the eccentricity of the
vertices uj, vi is 3p+2n+1 where i=1;2n+2.
in the
remaining 2n rows is 4p. Hence from Table 1

The eccentricity of each vertex

we have:

E ccpmy S, A2p)9) |, 2(2p)14  2(2p)(8)
¢ (G)_VEVZ(:G)g(V)_3p+2n+1+ 4p * 4p
L 2(2pa2  2(2p)nd0) | [2(2p)(n) —2(2p)1(13)
4p 4p 4p

L[22p)(n)-2(2p)]15) _ 144p
4p 3p+2n+1

+38n+6.

From Table 2, we have

Z.Ahmad et al.

A ~C G — Iv'V
é/ ( ) VE;G)‘C"(V)

_ 2(2p)(24) | 2(2p)(20) | 2(2p)(100) , 2(2p)(16)
3p+2n+1 3p+2n+1 4p 4p
,22p)(72) | 2(2p)n(25) _ [2(2p)(n) —2(2p)](L08)

4p 4p 4p
L[2@2p)(n)~2(2p)]125) _  176p
4p 3p+2n+1

+258n-45.
]

Theorem 3. Let TiO;[m;n] be the graph of

titania nanotube, where P <n<p-1and

p # 2n then we have:
. 8p(78p+52n+17)
E ~c le) , —
¢ (TG, [m. ) (3p+2n+1)(3p+2n)
224p(2n—-p-1) N 160p
4n® +12np-2n-7p%-7p 4n’®+12np+4n-7p%-2p

+2(19p—-19n+5),
A e 16p(174p +116n+47)
iO,[m,n]) =
¢ (MO,[m.n) Bp+2n+1)(3p+2n)
1864p(2n—-p-1) . 400p
4n? +12np-2n-7p%—-7p 4n®+12np+4n—-7p%-2p
+258 p —258n + 25.

Proof: In this case the eccentricity of the
vertices uj, vij is same as the eccentricity of
vertices Uen+3ij, Vine3n, where i=1;2;...;2n-
p+1. The eccentricity of these vertices in ith
row is given by

wherei=12,...,2n— p+1.

The eccentricity of vertices uy, vij in remaining
2p-2n rows is 4p.

Also, the eccentricity of the vertices xj, yi;,
X@i+1)j Y(+1)j IS same as the eccentricity of the
vertices X(zn+3i)j, Y(2n+3i)j X(2n+20)j, Y(2n+2i)] Where

2n—-p

i=12,..., . The eccentricity of these

vertices in ith row is given by

. 2n—

wherei =1,2,..., p.

The eccentricity of the vertices x;, y; in the
remaining (2p-2n+2) rows is 4p. Hence from
Tablel, we have:
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ErcG) = S
£5(G) nge(v)
__42p)O)  2(2p)4a  (2p)(4n-2-2p)(15)
2n—p+1
3p+2n+1 3p+2n Zp: (3p+2n+2-i)

i=3

2p(2p-2n)(15) 2p(4n-2-2p)(13)
+ +
4p 2n—-p+1 .
> (3p+2n+2-i)
i=3

L 2p2p-2n)(13)  2(2p)(8)  2(2p)12
4p (3p+2n) 3p+2n
2(2p)10 . (2p)(2p-2n+2)10
2n-p
2 4p
> (Bp+2n+2-2i)
i=1
_ 8p(78p+52n+17) 224p(2n-p-1)
(Bp+2n+1)(3p+2n) 4n?+12np-2n—7p>-T7p
160p
+
4n? +12np+4n—-7p%-2p
From Table 2, we have

+2(19p-19n+5).

A ~C G)= Mv
() Ve%e)g(V)

_2(2p)(24) | 2(2p)(20) | 2(2p)(100)
3p+2n+1 3p+2n+l 3p+2n
2p(4n-2-2p)(125) 2p(2p-2n)(125)
2n—p+l + 4p
D, (Bp+2n+2-i)

i=3
N 2p(4n—2-2p)(108) N 2p(2p—2n)(108)

2n—p+l 4
> (3p+2n+2-i) P
i=3
2(2p)(6) 2(2p)72 2(2p)25
+ + +
3p+2n  3p+2n 2-p

Zzl (Bp+2n+2-2i)
i
L (2p)(2p-2n+2)25 _16p(L74p +116n+47)
4p (Bp+2n+1)(3p+2n)
1864p(2n—p-1) . 400p
an? +12np-2n-7p%—7p 4n*+12np+4n-7p2-2p
+258p —258n + 25.

Theorem 4. Let TiOz[m;n] be the graph of
titania nanotube, where n=p-1 and n is odd
then we have

. 4p(104n+156p+34)
E ~c o , —
¢~ (TI0[m.n]) (2n+3p)(2n+3p+1)
L 224p 160pn
3(n+2p) (n-)(Bn+6p-1)°

. 4p(464n+696p+188)
AZC(TiO,[m, n]) =
¢~ (TI0,[m. D) (2n+3p)(2n+3p+1)

1864p 400np

+ + :
3(n+2p) (n-D(Bn+6p-1)
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Proof: In this case the eccentricity of vertices
uj, vij is same as the eccentricity of vertices
Uzn+3i)j,  V(2n+3i)j i=1;2;..;,n+1. The
eccentricity of these vertices in ith row is

where

given by )
wherei=1,2,...,n+1.

Also, the eccentricity of the vertices xj, Vi,
X@+Dj Y@+ 1S same as the eccentricity of the

Vertices Xon,3i) j» Y(an+3iy j» X(2n+2i) j» Y(an2i) j

where j-12 n_+1 The eccentricity of these
2

vertices in ith row is given by
g(xij) :5(yij) =3p+2n+2—2i,

wherei =1,2,...,n7+1.

Hence from Table 1 we have:

E ~c G)= Sv
¢ (G) VG%G)«S(V)
__42p)Q) | 22p)4 2(2p)(n-1)(15)

3p+2n+1 2n ot .
3p+2n+1 3p+2n Z(3p+2n+2—|)

i=3
,22p)12) | 2(2p)(n-DA3) _ 22p)(E)

n+l

3p+2n Z(3p+2n+2—i) 3p+2n
i=3

2(2p)(n)0)

n+1

2

D (3p+2n+2-2i)

i=2

_ 4p(104n+156p +34) N 224p
(2n+3p)(2n+3p+1) 3(n+2p)
N 160 pn
(n-)(Bn+6p-1)°

The shortest paths with maximal length in
TiO2[8;7] are shown in Figure3. From Table2
we have:



Page |717 ; Eurasian
Chemical
@m Cog::':ﬁarllications
M,  2(2p)(24) N 2(2p)20
3p+2n+1 3p+2n+1
, 22p)(72)
3p+2n

A ~C G)=
¢ (G) VGVZ(:G)g(V)
2(2p)100  2(2p)(n-1)(125)
3pron
P S (3p+2n+2-i)

i=3
,22p)n-1)A08) 2(2p)16)  2(2

n+1 n+l

> (3p+2n+2-i) 3pr2n - _

i3 > (3p+2n+2-2i)
i2

1864 p N 400np

3(n+2p) (n-1)(3n+6p-1)°

p)(n)(25)

_ 4p(464n+696p+188) N
(2n+3p)(2n+3p+1)

Theorem 5. Let TiOz[m;n] be the graph of

titania nanotube, where nzp-1 and n is even

then we have
. 8p(52n+78p+17)
E£8(Tio,[m,n]) =
¢~ (Ti0,[m.n]) (2n+3p)(2n+3p+1)
,.32p@n-19)
3(n=2)(n+2p)

. 4p(464n+696p+188)
ALS(TIO,[m, n]) =
¢~ (TIO,[m.n]) (2n+3p)(2n+3p+1)
1864 p 400(n-1)p

3(n+2p) 3(n-2)(n+2p)’

Proof: In this case the eccentricity of vertices
ujj, vy is same as we discussed in Theorem 4.
Also, the eccentricity of the vertices xi, i,
X(i+1)j, Y@+1)j IS same as the eccentricity of the

vertices X(zn+3i)j, Y(2n+3i)j X(2n+2i)jy Y(2n+2i)j Where

i=1, 2,“_,2_ The eccentricity of these vertices
2

in ith row is given by

g(xij) =g(yij) =3p+2n+2-2i,wherei =1,2,...,2

The eccentricity of the vertices x;, y; in the
remaining 2 rows is 4p. Hence from Table 1

.2':2é§

we have:

"

[{

7
°“
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E ~c G)= Sv
£°(G) Z@) -0
_4@2p)(O9) _ 2(2p)i4  2(2p)(n-1)(15)

3p+2n+1 3p+2n ni(Sp+2n+2—i)

i=3

L22p)2) | 2@2p)(n-1@3) | 2(2p)(@)
n+l
3p+2n Z(3p+2n+2—i) 3p+2n
i=3
2(2p)(n-1)10) _ 2(2p)10
: L

D (Bp+2n+2-2i)

i=2
_ 8p(52n+78p +17) N 32p(12n-19) +10
(2n+3p)(2n+3p+1) 3(n—-2)(n+2p)
From Table 2 we have:

M

A ~C

¢ (G)=

VGVZ(:G)E(V)

_2(2 p)(24) 2(2p)20 N 2(2p)100
3p+2n+1 3p+2n+1 3p+2n

L 2@2p)(n-1)A25) | 2(2p)(72)
n+1

> @Bp+2n+2-i) 3p+2n

i=3

L 2(2p)(n-1)108) _ 2(2p)(16)
n+1

> (3p+2n+2-i) 3p+2n

i=3
2(2p)(n-1)(25)

\

, 22p)25
4p

N | S

> (Bp+2n+2-2i)
i=2
_4 p(464n+696p +188)
(2n+3p)(2n+3p+1)
400(n-1)p
3(n-2)(n+2p)

1864 p
3(n +2p)

-

— - -

FIGURE 4Shortest path with maximal length in TiO2[m;n |
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Theorem 6. Let TiOz[m;n] be the graph of
titania nanotube, where m=2p and p=2n-1,
then we have

. 104p(6p+4n+1)
ELC(TiO,[m,n]) = +38n-28,
¢ (MO,[m.nD Bp+2n+1)(3p+2n)
A§°(ri02[m, ) = 16p(l74p+116n+43) 9580233,
(Bp+2n+)(3p+2n)

Proof: In this case the eccentricity of the
vertices uj, vi is same as the eccentricity of
vertices Ugn+3i)j, Vn+3p. where i=1;2. The
eccentricity of these vertices in it row is
given by
e(u;) =&(v;)) =3p+2n+2—i,wherei =1,2.
The eccentricity of vertices uy, vij in remaining
2n-2 rows is 4p. Also, the eccentricity of the
vertices xij, y1j is same as the eccentricity of
vertices X(zn+2)j, X(zn+2);- The eccentricity of the
X1j,Y1j is
e(x;)=¢(vj)=3p+2n+1.

vertices given by
The eccentricity of the vertices x;, y; in the
remaining 2n rows is 4p. The shortest path
with maximal length in TiO2[14;4] is shown in
Figure 4.
Hence from Table 1, we have
S
E ~cC
¢ G)=
vaz(:G) e(v)
_42p)©) _ 22p04  22p)@2)
3p+2n+1 3p+2n 3p+2n
L 22p)(n-1@5) _ 22p)(n-1(3)
4p 4p
,_2(2p)(®) _ 22p)n(0)
3p+2n+1 4p
_ 104p(6p+4n+1)
Bp+2n+1)(3p+2n)

\

+38n-28.

From Table 2, we have
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A ~C G)= I\/lv
é’ ( ) VEVZ(:G) 8(V)
_ 2(2p)(24) N 2(2p)(20) N 2(2p)100
3p+2n+1 3p+2n+1 3p+2n
,22p)(72) | 2(2p)(n-1(125)

3p+2n 4p
L 22p)(n-1)(108)  2(2p)A6) _ 2(2p)n(25)
4p 3p+2n+1 4p
_ 16p(174p+116n+43) 4 9580 — 233,
(Bp+2n+1)(3p+2n)

Theorem 7. Let TiOz[m;n] be the graph of
titania nanotube, wherepT_1 <n<p-lLp#2n-1
then we have

104p(4n+6p+1)
(2n+3p)(2n+3p+1)

=¢E(Ti0,[m, n]) =

224p
+
4n® +12np-2n-7p%-T7p
320p
+ 2 2
L2np-7p°-8p+4n° -1
. 16p(116n+174p+43
A2 Tioy[m, ) = 0B b+ 49)
(2n+3p)(2n+3p+1)
1864p
4n? +12np-2n-7p*-7p
800p
4n% +12np-7p*-8p-1

+38p—-38n+10,

+258p—258n+25.

Proof: In this case the eccentricity of the
vertices uj, vij is same as we discussed in
Case2.2 of Theorem 2. The eccentricity of the
vertices Xij, V1j, X(@2n+2)j X(2n+2)j IS Same as we
discussed in Case 3.1. Also, the eccentricity of
the vertices X(+1)j, Y(+1)j Xa+2)j Yi+2)j IS same as
the eccentricity of the vertices X@zn+2i);, Y(2n+2i)j
2n-p-1 _1_ The

2
eccentricity of these vertices in (i+1)% row is
given by
g(X(iH.)j) = 8(V(i+1)j) :3P+2n +1—2|,
2n—p-1

> .

The eccentricity of the vertices xj, yi in the
remaining (2p-2n+2) rows is 4p. Hence from

X(2n+1i)j, Y(2n+1)j Where i=12 ..,

wherei =1,2,...,

Table 1 we have:
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Ercgye 3 S
(c) VEVZ(:G>8(V)

_42p)O) |, 2(2p)4
3p+2n+1 3p+2n

2(2p)(15)
2n—p+1
> 3p+2n+2-i
i3
L (2p)(2p-2n)d5) 2(2p)13) . 2p(2p-2n)3)
4p 2n—p+1 ) 4p
> (@p+2n+2-i)
i-3

2(2p)8 4(2p)(10) + 2p(2p—-2n+2)(10)
3p+2n+1 % 4p

> (Bp+2n+1-2i)

i-1
_ 104p(4n+6p+1) 224p

~(2n+3p)(2n+3p+1)  4n2+12np-2n—-Tp2—T7p
320p

12np-7p%-8p+4n? -1

, 22p)(2)
3p+2n

+38p—-38n+10.

From Table 2 we have:

A ~cC G)= S
<@ VEVZ(:G)S(V)

_ 2(2p)(24) N 2(2p)(20) N 2(2p)100
3p+2n+1 3p+2n+1l 3p+2n

2(2p)d25) (2p)(2p—2n)(125)

2n—-p+l . 4p
D 3p+2n+2-i
i=3

, 22p)(72)
3p+2n

\

2(2p)(108)
2n-p+1
> (Bp+2n+2-i)
i=3
4 2p(2p—2n)(108) 4
4p
4(2p)(25)
2n—p—1
22: Bp+2n+1-2i)
i=1
_16p(116n+174p+43) N
~ (2n+3p)(2n+3p+1)

800p
+
4n? +12np-7p>-8p-1

2(2p)16
3p+2n+1
N 2p(2p—2n+2)(25)
4p

+

1864p
4n? +12np-2n-7p%-7p

+258p —258n + 25.

Theorem 8. Let TiOz[m;n] be the graph of
titania nanotube, where n>p-1 and n is odd,
then we have

. 52p(6p+4n+1)
5 ¢(Ti0,[m, n]) =
¢ (TG,[m.n]) Bp+2n+1)(3p+2n)
224p 160pn
3(n+2p) (n-D@Bn+6p+1)’
. 16 p(174p +116n+43)
A ~C O , —
¢ (MO, [m.n) (Bp+2n+1)(3p+2n)
1864 p 400pn

+ + .
3(n+2p) (N=-1(Bn+6p+1)
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Proof: In this case the eccentricity of the
vertices uj,vij is same as we discussed in
Case2.3. The eccentricity of the verticesxj, y1j,
X(2n+2)j X(2n+2)j 1S same as we discussed in
Case3.1. Also, the eccentricity of the vertices

X+, Y@+, X@+2)jp Ya+2)j iS same as the
eccentricity of the vertices Xg@n:2pj, Y(2n+2i)j
Xen1p  Yemiy; where j_pp M=l The
2
eccentricity of these vertices in (i+1)t row is
given by
. n-1
wherei =1,2,...,—.
2
Hence from Table 1, we have
E ~c S
¢ (G)= —=
VE%G) £(V)
__42p)9) 4 2(2p)14 N 2(2p)(n—1)(15)
n+1l
3p+2n+1 3p+2n 23p+2n+2—i
i=3
L 2@2p)Aa2)  2(2p)(n-1)A3) . 2(2p)(8)
n+1l
3p+2n 23p+2n+2—i 3p+2n+1
i=3
2(2p)n(10)
+ n-1
2
> (Bp+2n+1-2i)
i=1
52p(6p+4n+1) 224p 160pn

(Bp+2n+1)@Bp+2n) 3(n+2p) (N-DBn+6p+1)

Hence from Table 2, we have
AFC(G) = M
¢ (G) VEVZ(:GW(V)

_ 2(2p)(24) | 2(2p)(20) , 2(2p)100
3p+2n+1 3p+2n+1 3p+2n

L 22p)(n-1A25)  2(2p)(72)

v

n+1
Sapr2ns2-i  oPFAN
i=3
L 2@2p)(n-=)(A08)  2(2p)16)  _  2(2p)n(25)
ol . 3p+2n+1 Nt
3 2n+2— 2
; et > (Bp+2n+1-2i)
i=1
_16p(174p+116n+43)  1864p N 400pn
~ (Bp+2n+1)@Bp+2n)  3(n+2p) (N—1)Bn+6p+1)

Theorem 9. Let TiOz[m;n] be the graph of
titania nanotube, where nzp-1 and n, then we
have
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. 104p(4n+6p+1) 128p
E£C(Tio,[m,n]) = :
¢ (TO,[m.n) (2n+3p)(2n+3p+1)+n+2p
. 16p(l16n+174p+43) 2264
A2 (Tioy[m,n]) = OB b4y, 2P
2n+3p)2n+3p+1) 3(n+2p)

Proof: In this case the eccentricity of the
vertices X(i+1)j, Y(i+1)j X@+2)p Y(i+2) IS same as the
eccentricity of the vertices X(n+2-i),y(2n+2-0j»

where j-12 1 The
2

eccentricity of these vertices in (i+1)*row is
given by
‘9(X(i+1)j) = S(y(i+1)j) =3P+2n+1-2i,

X@2n+17i)jy  Y(2n+1-i)j

wherei :1,2,...,2.
2
The eccentricity of the remaining vertices is
same as we discussed in case 3. Hence from
Table 1 we have
E .c S
<© _Vevz(:e) e(v)

_42p)9) | 2(2p)14  2(2p)(n-1)(AS)
3p+2n+1 3p+2n ¥

\'A

> 3p+2n+2-i
i=3
L 22p)@2)  2@2p)(n-133) | 22p)E)
3p+2n §3p+2n+2—i 3p+2n+1
i=3
2(2p)n(10) _ 104p(4n+6p+1) +128p
n (2n+3p)(2n+3p+1) n+2p

2
> 3p+2n+1-2i

i=1

Hence from Table 2, we have

AFC(G) = M,
¢ (G) VEVZ(:G) =)
_2(2p)(24) N 2(2p)(20) N 2(2p)100

~ 3p+2n+1 3p+2n+1 3p+2n
L 2(2p)(n-1)A25)  2(2p)(72) , 2(2p)(16)

n+1
Z3p+2n+2—i 3p+2n 3p+2n+1
i=3
2(2p)(n—-1)(108) 2(2p)n(25)
+ n+l + n
3p+2n+2—i 2
; P > 3p+2n+1-2i
i=1
_16p(i6n +174p+43)+ 2264 p
(2n+3p)(2n+3p+1) 3(n+2p)’
Conclusion

In this research study, we studied the Ediz
eccentric connectivity index and augmented
eccentric connectivity index of the molecular

Eurasian
Chemical
Communications

@)‘m Page |720

structure Titania nanotube TiOz[m;n] by
taking different variation of number of
octagons in
investigated the exact formulas of
eccentric connectivity
nanotube TiOz[m;n]. Further work on this
molecular structure can be performed for
other famous distance based topological

rows and columns and
these

indices of Titania

indices.
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