Document Type : Original Research Article

Authors

KSoM, KIIT Deemed to be University, Bhubaneswar, Odisha, India

Abstract

Cancer is well-recognized as a leading cause of morbidity and mortality on a worldwide scale. Significant progress has been made in the areas of screening, diagnosis, treatment, and survivorship in recent decades. Nevertheless, there are still obstacles to overcome in delivering individualized and data-driven healthcare. Artificial intelligence (AI), a subfield of computer science focused on prediction and automation, has emerged as a promising option for enhancing the healthcare journey and advancing precision in healthcare. The utilization of artificial intelligence (AI) in oncology encompasses several areas, such as enhancing cancer research, refining clinical practices (e.g., forecasting the correlation between numerous factors and outcomes, such as prognosis and response), and deepening our comprehension of tumor molecular biology. This study aims to explore the significance of artificial intelligence (AI) in cancer research within the Indian context. To fulfill the objective of this study, a diverse range of medical experts was taken into consideration, and the perspectives articulated by the participants are presented above. The study revealed that artificial intelligence (AI) assumes a significant role in the provision of health care services, particularly in the domain of cancer treatment.

Graphical Abstract

Artificial intelligence (AI): cancer treatment revolution in India

Keywords

Main Subjects

[1] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 2021, 71, 209. ‎[Crossref], [Google Scholar], [Publisher]‎
[2.] L.A. Emens, P.A. Ascierto, P.K. Darcy, S. Demaria, A.M.M. Eggermont, W.L. Redmond, B. Seliger, F.M. Marincola, Science Direct Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape, Eur. J. Cancer., 2017, 81, 116-129. ‎[Crossref], [Google Scholar], [Publisher]‎
[3] D.J. Ahnen, S.W. Wade, W.F. Jones, R. Sifri, J.M. Silveiras, J. Greenamyer, S. Guiffre, J. Axilbund, A. Spiegel, Y. Nancy You, The increasing incidence of young-onset colorectal cancer: a call to action, Mayo Clin. Proc., 2014, 89, 216. ‎[Crossref], [Google Scholar], [Publisher]‎
[4] V. Verma, T. Sprave, W. Haque, C.B. Simone, J.Y. Chang, J.W. Welsh, C.R. Thomas, A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors 11 Medical and Health Sciences 1112 Oncology and Carcinogenesis, J. Immunother. Cancer, 2018, 6, 1. ‎[Crossref], [Google Scholar], [Publisher]‎  
[5] J. Dong, Y. Geng, D. Lu, B. Li, L. Tian, D. Lin, Y. Zhang, Clinical trials for artificial intelligence in cancer diagnosis: a cross-sectional study of registered trials in ClinicalTrials.gov, Front. Oncol., 2020, 10, 1-6. ‎[Crossref], [Google Scholar], [Publisher]‎
[6] S. Jha, E.J. Topol, Adapting to artificial intelligence: radiologists and pathologists as information specialists, JAMA, 2016, 316, 2353. ‎[Crossref], [Google Scholar], [Publisher]‎  
[7]  W. Linda Bi, A. Hosny, M.B. Schabath, M.L. Giger, N.J. Birkbak, A. Mehrtash, T. Allison, O. Arnaout, C. Abbosh, I.F. Dunn, R.H. Mak , R.M. Tamimi, C.M. Tempany, C. Swanton, U. Hoffmann, L.H. Schwartz, R.J. Gillies, R.Y. Huang, H.J.W.L. Aerts, Artificial intelligence in cancer imaging: clinical challenges and applications, CA Cancer J. Clin., 2019, 69, 127. ‎[Crossref], [Google Scholar], [Publisher]‎
[8] A. Hosny, C. Parmar, J. Quackenbush, L.H. Schwartz, H.J.W.L. Aerts, Artificial intelligence in radiology, Nat. Rev. Cancer, 2018, 18, 500. ‎[Crossref], [Google Scholar], [Publisher]‎  
[9] A. Ghosh, Artificial intelligence using open source BI-RADS data exemplifying potential future use, J. Am. Coll. Radiol., 2019, 16, 64. ‎[Crossref], [Google Scholar], [Publisher]‎
[10] T. Schaffter, D.S.M. Buist, C.I. Lee, Y. Nikulin, D. Ribli, Y. Guan, W. Lotter, Z. Jie, H. Du, S. Wang, J. Feng, M. Feng, H.E. Kim, F. Albiol , A. Albiol, S. Morrell, Z. Wojna, M. Eren Ahsen, U. Asif, A. Jimeno Yepes, S. Yohanandan, S. R.Cohen, D. Yi, B. Hoff, T. Yu, E. Chaibub Neto, D. L. Rubin, P. Lindholm, L.R. Margolies, R.B. McBride, J.H. Rothstein, W. Sieh, R. Ben-Ari, S. Harrer, A. Trister, S. Friend, T. Norman, B. Sahiner, F. Strand, J. Guinney, G. Stolovitzky, L. Mackey, J. Cahoon, L. Shen, J.H. Sohn, H. Trivedi, Y. Shen, L. Buturovic, J.C. Pereira, J. S. Cardoso, E. Castro, K.T. Kalleberg, O. Pelka, I. Nedjar, K.J Geras, F. Nensa, E. Goan , S. Koitka, L. Caballero, D.D. Cox, P. Krishnaswamy, G. Pandey, C.M. Friedrich, D. Perrin, C. Fookes, B. Shi, G.C. Negrie, M. Kawczynski, K. Cho, C. Son Khoo, J.Y. Lo, A. Gregory Sorensen, H. Jung, Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms, JAMA Netw. Open, 2020, 3, e200265. ‎[Crossref], [Google Scholar], [Publisher]‎
[11] M. Schultheiss, S.A. Schober, M. Lodde, J. Bodden, J. Aichele, C. Müller-Leisse, B. Renger, F. Pfeiffer, D. Pfeiffer, A robust convolutional neural network for lung nodule detection in the presence of foreign bodies, Sci. Rep., 2020, 10, 12987. ‎[Crossref], [Google Scholar], [Publisher]‎
[12] M. Zhang, G.S. Young, H. Chen, J. Li, L. Qin, J. Ricardo McFaline-Figueroa, D.A. Reardon, X. Cao, X. Wu, X. Xu, Deep-learning detection of cancer metastases to the brain on MRI, J. Magn. Reason. Imaging, 2020, 52, 1227-1236. ‎[Crossref], [Google Scholar], [Publisher]‎
[13] X. Liu, Deep learning analysis for automatic lung nodule detection, J. Global Oncol., 2019, 5, 27. ‎[Crossref], [Google Scholar], [Publisher]
[14] M.M. Shaver, P.A. Kohanteb, C. Chiou, M.D. Bardis, C. Chantaduly, D. Bota, C. G. Filippi, B. Weinberg, J. Grinband, D.S. Chow, P.D. Chang, Optimizing neuro-oncology imaging: a review of deep learning approaches for glioma imaging, Cancers (Basel), 2019, 11, 829. ‎[Crossref], [Google Scholar], [Publisher]‎
[15] M. Avanzo, J. Stancanello, G. Pirrone, G. Sartor, Radiomics and deep learning in lung cancer, Strahlenther. Onkol., 2020, 196, 879. ‎[Crossref], [Google Scholar], [Publisher]‎
[16] C. Dreher, P. Linde, J. Boda-Heggemann, B. Baessler, Radiomics for liver tumors. Strahlenther. Onkol., 2020, 196, 888. ‎[Crossref], [Google Scholar], [Publisher]‎
[17] M. Kocher, M.I. Ruge, N. Galldiks, P. Lohmann, Applications of radiomics and machine learning for radiotherapy of malignant brain tumors, Strahlenther. Onkol., 2020, 196, 856. ‎[Crossref], [Google Scholar], [Publisher]‎
[18] S. Bae, C. An, S. Soo Ahn, H. Kim, K. Han, S. W. Kim, J.E. Park, H.S. Kim, S.K. Lee, Rbust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation, Sci. Rep., 2020, 10, 12110. ‎[Crossref], [Google Scholar], [Publisher]‎
[19] J.F. Yamamoto, I.O. de Souza, L.S. Letaif, V. Cobello-Junior, Information technology challenges in a public hospital during the COVID-19 pandemic, Clinics (Sao Paulo), 2021, 76, e2648. ‎[Crossref], [Google Scholar], [Publisher]‎
[20] A. Pucchio, E.A. Eisenhauer, F.Y. Moraes, Medical students need artificial intelligence and machine learning training, Nat. Biotechnol., 2021, 39, 388-389. ‎[Crossref], [Google Scholar], [Publisher]‎
[21] Y. Mori, S.Ei Kudo, J. E. East, A. Rastogi, M. Bretthauer, M. Misawa, M. Sekiguchi, T. Matsuda, Y. Saito, H. Ikematsu, K. Hotta, K. Ohtsuka, T. Kudo, K. Mori, Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (with video), Gastrointest. Endosc., 2020, 92, 905. ‎[Crossref], [Google Scholar], [Publisher]‎
[22] L. Hu, D. Bell, S. Antani, Z. Xue, K. Yu, M.P. Horning, N. Gachuhi, B. Wilson, M.S. Jaiswal, B. Befano, L.R. Long, R. Herrero, M.H. Einstein, R. D. Burk, M. Demarco, J.C. Gage, A.C. Rodriguez, N. Wentzensen, M. Schiffman., An observational study of deep learning and automated evaluation of cervical images for cancer screening, J. Natl Cancer Inst., 2019, 111, 923. ‎[Crossref], [Google Scholar], [Publisher]‎
[23] K. Shaffer, Can machine learning be used to generate a model to improve the management of high-risk breast lesions? Radiology, 2018, 286, 819. ‎[Crossref], [Google Scholar], [Publisher]‎
[24] L.A. Hildebrand, C.J. Pierce, M. Dennis, M. Paracha, A. Maoz, Artificial intelligence for histology-based detection of microsatellite instability and prediction of response to immunotherapy in colorectal cancer, Cancers, 2021, 13, 1. ‎[Crossref], [Google Scholar], [Publisher]‎
[25] G. Liang, W. Fan, H. Luo, X. Zhu, The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed. Pharmacother., 2020, 128, 110255. [Crossref], [Google Scholar], [Publisher]
[26] B. Liu, H. He, H. Luo, T. Zhang, J. Jiang, Artificial intelligence and big data facilitated targeted drug discovery, Stroke Vasc. Neurol., 2019, 4, 206. [Crossref], [Google Scholar], [Publisher]
[27] P. Liu, H. Li, S. Li, KS. Leung, Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network, BMC Bioinformatics, 2018, 20, 408. ‎[Crossref], [Google Scholar], [Publisher]‎
[28] A. Artemov, E. Putin, Q. Vanhaelen, A. Aliper, I. Ozerov, A. Zhavoronkov, Integrated deep-learned transcriptomic and structure-based predictor of clinical trial outcomes, bioRxiv., 2016, 095653. ‎[Crossref], [Google Scholar], [Publisher]‎
[29] H. Hassanzadeh, S. Karimi, A. Nguyen, Matching patients to clinical trials using semantically enriched document representation, J. Biomed. Inform., 2020, 105, 103406. ‎[Crossref], [Google Scholar], [Publisher]‎
[30] J. Thaddeus Beck, M. Rammage, G.P Jackson, A.M. Preininger, I. Dankwa-Mullan, M.C. Roebuck, A. Torres, H. Holtzen, S.E Coverdill, M.P. Williamson, Q. Chau, K. Rhee, M. Vinegra, Artificial intelligence tool for optimizing eligibility screening for clinical trials in a large community cancer centre, JCO Clin. Cancer Inform., 2020, 4, 50. ‎[Crossref], [Google Scholar], [Publisher]‎
[31] J.M. Unger., E. Cook, E. Tai, A. Bleyer, The role of clinical trial participation in cancer research: barriers, evidence, and strategies, Am. Soc. Clin. Oncol. Educ. Book., 2016, 36, 185. [Crossref], [Google Scholar], [Publisher]