Document Type : Original Research Article


1 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Indonesia

2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, West Sumatra, Indonesia

3 Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Indonesia, Depok, West Java, Indonesia

4 Department of Information Technology, Faculty of Computer Sciences, Universitas Brawijaya, Malang, East Java, Indonesia

5 Department of Agricultural Technology, Faculty of Agricultural Technology, Universitas Andalas, Padang, Indonesia

6 Pharmacy Program, Faculty of Health Sciences, Universitas Ma Chung, Malang, Indonesia

7 Faculty of Agriculture, Universitas Taman Siswa, Padang, Indonesia

8 Department of Radiology, Faculty Health, Universitas Awal Bros, Indonesia

9 Department of Informatics Engineering, Faculty of Computer Sciences, Universitas Hang Tuah Pekanbaru, Indonesia


This research aims to develop an effective diagnostic biomarker to identify breast cancer using ellagic acid compound found in pomegranate (Punica granatum) as a specific target. The research method was conducted using Pymol, Pyrex, Protein Plus, and Lepinski Rule software for structural analysis and molecular interactions. The results showed that ellagic acid has a strong binding affinity for the protein-tyrosine kinase receptor ERBB-2, with binding affinity values of -6.7, -6.6, and -6.5 and RMSD of 0, 0.147, and 1.301. In addition, analysis using Protein Plus revealed an interaction between ellagic acid and the protein-tyrosine kinase receptor ERBB-2. Lipinski analysis showed that ellagic acid has a mass of 302, a hydrogen bond donor number of 4, a hydrogen bond acceptor number of 8, a log P of 1.241, and a molar reactivity of 68.454. This discovery has the potential to be an effective diagnostic biomarker in identifying breast cancer, which could help in the early diagnosis and treatment of this disease.

Graphical Abstract

Diagnostic biomarker of ellagic acid compound from pomegranate plant (punica granatum) on receptor protein-tyrosine kinase ERBB-2 in identifying breast cancer


Main Subjects

[1] A.G. Waks, E.P. Winer, Breast cancer treatment: a review, Jama, 2019, 321, 288. [Crossref], [Google Scholar], [Publisher]
[2] H. Li, M.L. Giger, Breast cancer, Radiomics and Radiogenomics, 2019, 229. [Google Scholar], [Publisher]
[3] E.J. Watkins, Overview of breast cancer, J. Am. Acad. Pas, 2019, 32, 13-17. [Google Scholar], [Publisher]
[4] S. Bassiri-Jahromi, Punica granatum (Pomegranate) activity in health promotion and cancer prevention, Oncol. Rev., 2018, 12. [Crossref], [Google Scholar], [Publisher]
[5] E. Shaygannia, M. Bahmani, B. Zamanzad, M. Rafieian-Kopaei, A. review study on Punica granatum L, J. Evid. Based Complementary Altern. Med., 2016, 21, 221. [Crossref], [Google Scholar], [Publisher]
[6] D.R. Miller, M.A. Ingersoll, M.F. Lin, ErbB-2 signaling in advanced prostate cancer progression and potential therapy, Endocr. Relat. Cancer, 2019, 26, R195. [Google Scholar], [Publisher]
[7] L.E. Black, J.F. Longo, S.L. Carroll, Mechanisms of receptor tyrosine-protein kinase ErbB-3 (ERBB3) action in human neoplasia, Am. J. Pathol., 2019, 189, 1898-1912. [Crossref], [Google Scholar], [Publisher]
[8] H. Wu, Z. Cai, G. Lu, S. Cao, H. Huang, Y. Jiang, W. Sun, Impact of c-erbB-2 protein on 5-year survival rate of gastric cancer patients after surgery: a cohort study and meta-analysis, Tumori J., 2017, 103, 249-254. [Crossref], [Google Scholar], [Publisher]
[9] A. Mohammadinejad, T. Mohajeri, G. Aleyaghoob, F. Heidarian, R.K. Oskuee, Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies, Biotechnol. Appl. Biochem., 2022, 69, 2323-2356. [Crossref], [Google Scholar], [Publisher]
[10] J.H. Kim, Y.S. Kim, T.I. Kim, W. Li, J.G. Mun, H.D. Jeon, J.Y. Kee, J.G. Choi, H.S. Chung, Unripe black raspberry (Rubus coreanus Miquel) extract and its constitute, ellagic acid induces T cell activation and antitumor immunity by blocking PD-1/PD-L1 interaction, Foods, 2020, 9, 1590. [Crossref], [Google Scholar], [Publisher]
[11] S.M. El-Sonbaty, F.S.M. Moawed, E.I. Kandil, A.M. Tamamm, Antitumor and antibacterial efficacy of gallium nanoparticles coated by ellagic acid, Dose-Response, 2022, 20, 15593258211068998. [Crossref], [Google Scholar], [Publisher]
[12] N. Pramod, A. Nigam, M. Basree, R. Mawalkar, S. Mehra, N. Shinde, G. Tozbikian, N. W.S. Majumder, B. Ramaswamy, Comprehensive review of molecular mechanisms and clinical features of invasive lobular cancer, J. Oncol., 2021, 26, e943-e953. [Crossref], [Google Scholar], [Publisher]
[13] Z. El-Schich, Y. Zhang, T. Göransson, N. Dizeyi, J. Persson, E. Johansson, R. Caraballo, M. Elofsson, S. Shinde, B. Sellergren, A.G. Wingren, N. Dizeyi, Sialic acid as a biomarker studied in breast cancer cell lines in vitro using fluorescent molecularly imprinted polymers,  Appl. Sci., 2021, 11, 3256. [Crossref], [Google Scholar], [Publisher]
[14] H. Zhu, Y. Yan, Y. Jiang, X. Meng, Ellagic acid and its anti-aging effects on central nervous system, Int. J. Mol. Sci., 2022, 23, 10937. [Crossref], [Google Scholar], [Publisher]
[15] E. Fadhal, A Comprehensive Analysis of the PI3K/AKT Pathway: Unveiling Key Proteins and Therapeutic Targets for Cancer Treatment, Cancer Inform., 2023, 22, 11769351231194273. [Google Scholar], [Publisher]
[16] Z. Chang, P. Jian, Qiunan Zhang, Wenyi Liang, Kun Zhou, Qian Hu, Yuqi Liu, Runping Liu,  Lanzhen Zhang,Tannins in Terminalia bellirica inhibit hepatocellular carcinoma growth by regulating EGFR-signaling and tumor immunity, Food funct., 2021, 12, 3720-3739. [Crossref], [Google Scholar], [Publisher]
[17] G. Derosa, P. Maffioli, A. Sahebkar, Ellagic acid and its role in chronic diseases, Anti-Inflammatory Nutraceuticals and Chronic Diseases, 2016, 473. [Crossref], [Google Scholar], [Publisher]
[18] L.A. BenSaad, K.H. Kim, C.C. Quah, W.R. Kim. Mustafa Shahimi, Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum, BMC Complement Altern. Med., 2017, 17, 1. [Google Scholar], [Publisher]
[19] C. Cagliero, A. Marengo, M. Rittà, R. Francese, C. Sanna, C. Bertea, B. Sgorbini, D. Lembo, Punica granatum leaf ethanolic extract and ellagic acid as inhibitors of Zika virus infection, Planta Med., 2020, 86, 1363. [Google Scholar], [Publisher]
[20] F. Xie, L. Xu, H. Zhu, Y. Chen, Y. Li, L. Nong, Y. Zeng, S. Cen, The potential antipyretic mechanism of ellagic acid with brain metabolomics using rats with yeast-induced fever, Molecules, 2022, 27, 2465. [Crossref], [Google Scholar], [Publisher]
[21] V. Aishwarya, S. Solaipriya, V. Sivaramakrishnan, Role of ellagic acid for the prevention and treatment of liver diseases, Phytother. Res., 2021, 35, 2925. [Crossref], [Google Scholar], [Publisher]
[22] J. Wallis, P. Katti, A.M. Martin, T. Hills, L.W. Seymour, D.P. Shenton, R.C. Carlisle, A liposome-based cancer vaccine for a rapid and high-titre anti-ErbB-2 antibody response, Eur. J. Pharm. Sci., 2020, 152, 105456. [Crossref], [Google Scholar], [Publisher]
[23] N.S. Aini, V.D. Kharisma, M.H. Widyananda, A.A.A. Murtadlo, R.T. Probojati, D.D.R. Turista, M.B. Tamam, V. Jakhmola, D.P. Sari, MT. Albari, D. Pernamasari, M.A. Ghifari, M.R. Ghifari, R.S. Mandeli, Muhardi, B. Oktavia, T.K. Sari, T. Sriwahyuni, P. Azhari, M.F.Maahury, A.N.M. Ansori, R. Zainul, In silico screening of bioactive compounds from Syzygium cumini L. and moringa oleifera L. against SARS-CoV-2 via tetra inhibitors, Pharmacogn. J., 2022, 14, 4. [Crossref], [Google Scholar], [Publisher]
[24] H. Bora, M. Kamle, H. Hassan, A. Al-Emam, S. Chopra, N. Kirtipal, S. Bharadwaj, P. Kumar, Exploration of potent antiviral phytomedicines from Lauraceae family plants against SARS-CoV-2 RNA-dependent RNA polymerase, J. Biomol. Struct. Dyn., 2023, 1-21. [Crossref], [Google Scholar], [Publisher]
[25] S. Pal, V. Kumar, B. Kundu, D. Bhattacharya. N. Preethy, M.Prashanth Reddy, A. Talukdar, Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors, Comput. Struct. Biotechnol. J., 2019, 17, 291-310. [Crossref], [Google Scholar], [Publisher]
[26] M. Réau, F. Langenfeld, J.F. Zagury, N. Lagarde, M. Montes, Decoys selection in benchmarking datasets: overview and perspectives, Front. Pharmacol., 2018, 9, 11. [Crossref], [Google Scholar], [Publisher]
[27] L. Pinzi, G. Rastelli, Molecular docking: shifting paradigms in drug discovery, Int. J. Mol. Sci., 2019, 20, 4331. [Crossref], [Google Scholar], [Publisher]
[28] R. Selvaraj, G. Hemalatha, K. Sivakumari, In silico molecular docking stuides of Muricin J, Muricin K and Muricin L compound from A. muricata against apoptotic proteins (caspase-3, caspase-9 and β-actin), Innoriginal Int. J. Sci., 2020, 1-4.  [Google Scholar], [Publisher]
[29] X. Lin, X. Li, X. Lin, A review on applications of computational methods in drug screening and design, Molecules, 2020, 25, 1375. [Crossref], [Google Scholar], [Publisher]
[30] H. Patel, A. Kukol, Integrating molecular modelling methods to advance influenza A virus drug discovery, Drug Discov. Today, 2021, 26, 503. [Crossref], [Google Scholar], [Publisher]
[31] A.F. Dibha, S. Wahyuningsih, A.N.M. Ansori, V.D. Kharisma, M.H. Widyananda, A.A. Parikesit, Utilization of secondary metabolites in algae Kappaphycus alvarezii as a breast cancer drug with a computational method, Pharmacogn. J., 2022, 14. [Crossref], [Google Scholar], [Publisher]
[32] O.A. Ojo, A.B. Ojo, C. Okolie, M.A.C. Nwakama, M. Iyobhebhe, I.O. Evbuomwan, C.O. Nwonuma, R. Filibus Maimako, A. E. Adegboyega, O. Anthonia Taiwo, K.F. Alsharif, G. El-Saber Batiha, Deciphering the interactions of bioactive compounds in selected traditional medicinal plants against Alzheimer’s diseases via pharmacophore modeling, auto-QSAR, and molecular docking approaches, Molecules, 2021, 26, 1996. [Crossref], [Google Scholar], [Publisher]
[33] M.B. de Ávila, W.F. de Azevedo Jr, Development of machine learning models to predict inhibition of 3‐dehydroquinate dehydratase, Chem. Biol. Drug Des., 2018, 92, 1468-1474. [Crossref], [Google Scholar], [Publisher]
[34] G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res., 2021, 49.W1, W5-W14. [Crossref], [Google Scholar], [Publisher]
[35] J. Lemkul, From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0], Living J. Comp. Mol. Sci., 2019, 1, 1. [Crossref], [Google Scholar], [Publisher]
[36] N. Mawaddani, E. Sutiyanti, M. H. Widyananda, V.D. Kharisma, D.D.R. Turista, M. B. Tamam, V. Jakhmola, Syamsurizal, B.R. Fajri, M.R.Ghifari, M.T. Albari, M.A. Ghifari, A.P. Lubis, D. Novaliendry, D.H. Putri, F. Fitri, D.P. Sari, A.P. Nugraha, A.N.M. Ansori, M. Rebezov, R. Zainul, In silico study of entry inhibitor from Moringa oleifera bioactive compounds against SARS-CoV-2 infection, Pharmacogn. J., 2022, 14. [Crossref], [Google Scholar], [Publisher]
[37] J. Han, L. Geng, C. Lu, J. Zhou, Y. Li, T. Ming, Z. Zhang, X. Su, Analyzing the mechanism by which oyster peptides target IL-2 in melanoma cell apoptosis based on RNA-seq and m6A-seq, Food Funct., 2023, 14, 2362-2373. [Crossref], [Google Scholar], [Publisher]
[38] A.N.M. Ansori, V.D. Kharisma, A.A. Parikesit, F.A. Dian, R.T. Probojati, M. Rebezov, P. Scherbakov, P. Burkov, G. Zhdanova, A. Mikhalev, Y. Antonius, M.R.F. Pratama, N.I. Sumantri, T.H. Sucipto, R. Zainul, Bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanism against SARSCoV-2: an in silico approach, Pharmacogn. J., 2022, 14. [Crossref], [Google Scholar], [Publisher]
[39] M.E. Ullah, R.T. Probojati, A.A.A. Murtadlo, M.B. Tamam, S.W. Naw, Revealing of Antiinflamatory Agent from Zingiber officinale var. Roscoe via IKK-B Inhibitor Mechanism through In Silico Simulation, SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics., 2022, 1, 14-19. [Crossref], [Google Scholar], [Publisher]
[40] N. Wang, Z.Y. Wang, S.L. Mo, T.Y. Loo, D.M. Wang, H. Bin Luo, D.P. Yang, Y.L. Chen, J.-G. Shen, J.-P. Chen, Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer, Breast Cancer Res. Treat., 2012, 134, 943-955. [Google Scholar], [Publisher]
[41] M. Yousuf, A. Shamsi, P. Khan, M. Shahbaaz, M.F. AlAjmi, A. Hussain, G.M. Hassan, A. Islam, Q. M. R. Haque, I. Hassan, Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6, Int. J. Mol. Sci., 2020, 21, 3526. [Crossref], [Google Scholar], [Publisher]
[42] H.S. Chen, M.H. Bai, T. Zhang, G.D. Li, M. Liu, Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells, Int. J. Oncol., 2015, 46, 1730-1738. [Crossref], [Google Scholar], [Publisher]
[43] S. Jaman, A. Sayeed, Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: current evidence and future perspectives, Breast Cancer, 2018, 25, 517-528. [Crossref], [Google Scholar], [Publisher]
[44] R.T. Probojati, S.L. Utami, D.D.R. Turista, A. Wiguna,  P. Listiyani, A. Wijayanti, ؛. Rachmawati, S. Wahyuningsih, A.F. Dibha, T. Hasan, M.A. Hafidzhah,  R.M. Wijaya, A.M. Hikam, M.B. Tamam, A.A.A. Murtadlo, S.W. Naw, Revealing of Anti-inflammatory Agent from Garcinia mangostana L. Phytochemical as NF-κB Inhibitor Mechanism through In Silico Study. SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1, 02, 54-61.[Crossref], [Google Scholar], [Publisher]
[45] T. Zhang, H.S. Chen, L.F. Wang, M.H. Bai, Y.C. Wang, X.F. Jiang, M. Liu, Ellagic acid exerts anti-proliferation effects via modulation of Tgf-β/Smad3 signaling in MCF-7 breast cancer cells, Asian Pac. J. Cancer Prev., 2014, 15, 273-276. [Crossref], [Google Scholar], [Publisher]
[46] A.T. Rahman, Rafia, A. Jethro, P. Santoso, V.D. Kharisma, A.A.A. Murtadlo, D. Purnamasari, N.H. Soekamto, A.N.M. Ansori, Kuswati, R.S. Mandeli, K.A.M.S. Aledresi, N.F. M. Yusof, V. Jakhmola, M. Rebezov, M. Rebezov, R. Zainul, K. Dobhal, T. Parashar, M.A. Ghifari, D.A.P. Sari, In Silico Study of the Potential of Endemic Sumatra Wild Turmeric Rhizomes (Curcuma Sumatrana: Zingiberaceae) As Anti-Cancer, Pharmacogn. J., 2022, 14. [Crossref], [Google Scholar], [Publisher]
[47] V.D. Kharisma, A.N.M. Ansori, F.A. Dian, W.C. Rizky, T.G.A. Dings, R. Zainul, A.P. Nugraha, Molecular Docking And Dynamic Simulation Of Entry Inhibitor From Tamarindus Indica Bioactive Compounds Against Sars-Cov-2 Infection Via Viroinformatics Study, Biochem. Cell. Arch., 2021, 21, 3323. [Google Scholar], [Publisher]
[48] M.E. Ullah, S.W. Naw, A.A.A. Murtadlo, M.B. Tamam, R.T. Probojati, Molecular Mechanism of Black Tea (Camellia sinensis) as SARS-CoV-2 Spike Glycoprotein Inhibitor through Computational Approach, SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1, 20-25. [Crossref], [Google Scholar], [Publisher]
[49] V. Ahire, A. Kumar, K.P. Mishra, G. Kulkarni,acid enhances apoptotic sensitivity of breast cancer cells to γ-radiation, Nutr. Cancer, 2017, 69, 904-910. [Crossref], [Google Scholar], [Publisher]
[50] N. Wang, Q. Wang, H. Tang, F. Zhang, Y. Zheng, S. Wang, J. Zhang, Z. Wang, X. Xie, Direct inhibition of ACTN4 by ellagic acid limits breast cancer metastasis via regulation of β-catenin stabilization in cancer stem cells, J. Exp. Clin. Cancer Res., 2017, 36, 1-19. [Crossref], [Google Scholar], [Publisher]
[51] O.M. Ali, A.A. Bekhit, S.N. Khattab, M.W. Helmy, Y.S. Abdel-Ghany, M. Teleb, A.O. Elzoghby, Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast cancer therapy, Colloids Surf. B: Biointerfaces, 2020, 188, 110824. [Crossref], [Google Scholar], [Publisher]
[52] P. Listiyani, V. Dhea Kharisma, A. N. M. Ansori, M. H. Widyananda, R.T. Probojati, A. A. A. Murtadlo, D. D. Rahma Turista, Md. E. Ullah, V. Jakhmola, R. Zainul. In silico phytochemical compounds screening of Allium sativum targeting the Mpro of SARS-CoV-2, Pharmacogn. J., 2022, 14. [Crossref], [Google Scholar], [Publisher]
[53] A.F. Dibha, S. Wahyuningsih, V.D. Kharisma, A.N.M. Ansori, M.H. Widyananda, A.A. Parikesit ,M. Rebezov, Y. Matrosova, S. Artyukhova, N. Kenijz, M. Kiseleva, V. Jakhmola, R. Zainul, Biological activity of kencur (Kaempferia galanga L.) against SARS-CoV-2 main protease: In silico study, Int J Health Sci., 2022, 6, 468-480. [Crossref], [Google Scholar], [Publisher]
[54] R.T. Probojati, S.L. Utami, D.D.R. Turista, A Wiguna, A. Wijayanti, Y. Rachmawati, A.F. Dibha, A. A. A. M. T. Hasan, P. Listiyani, M. A. Hafidzhah, A. M. Hikam, M. B. Tamam, R. M. Wijaya, S. Wahyuningsih, Md.E. Ullah, B-cell Epitope Mapping of Capsid L1 from Human Papillomavirus to Development Cervical Cancer Vaccine Through In Silico Study, SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1, 62-71. [Crossref], [Google Scholar], [Publisher]
[55] H. Kaur, S. Ghosh, P. Kumar, B. Basu, K. Nagpal, Ellagic acid-loaded, tween 80-coated, chitosan nanoparticles as a promising therapeutic approach against breast cancer: In-vitro and in-vivo study, Life Sci., 2021, 284, 119927. [Crossref], [Google Scholar], [Publisher]
[56] N.S. Aini, V.D. Kharisma, M.H. Widyananda, A.A.A. Murtadlo, R.T. Probojati, D.D.R. Turista, M.B. Tamam, V. Jakhmola, D. P. Sari, M. T. Albari, D. Pernamasari, M.A. Ghifari, M.R. Ghifari, R.S. Mandeli, Muhardi, B. Oktavia, T.K. Sari, T. Sriwahyuni, P. Azhari, M. Fonda Maahury, A.N.M. Ansori, R. Zainul, In silico screening of bioactive compounds from Syzygium cumini L. and moringa oleifera L. against SARS-CoV-2 via tetra inhibitors, Pharmacogn. J., 2022, 14. [Crossref], [Google Scholar], [Publisher]
[57] S. Pirzadeh-Naeeni, M.R. Mozdianfard, S.A. Shojaosadati, A.C. Khorasani, T. Saleh, A comparative study on schizophyllan and chitin nanoparticles for ellagic acid delivery in treating breast cancer. International journal of biological macromolecules, 2020, 144, 380-388. [Crossref], [Google Scholar], [Publisher]
[58] S.M. Badr-Eldin, H.M. Aldawsari, U.A. Fahmy, O.A.A. Ahmed, N.A. Alhakamy, O.D. Al-Hejaili, A.A. Alhassan, G.A. Ammari, S.I. Alhazmi, R.M. Alawadi, R. Bakhaidar, A.J. Alamoudi, T. Neamatallah, S. Tima, Optimized Apamin-Mediated Nano-Lipidic Carrier Potentially Enhances the Cytotoxicity of Ellagic Acid against Human Breast Cancer Cells, Int. J. Mol. Sci., 2022, 23, 9440. ‎[Crossref], [Google Scholar], [Publisher]