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The global health landscape has seen an upsurge in viral 
diseases, underlining the urgency for novel antiviral therapies. 
This mini-review illuminates the potential antiviral capabilities 
of gamma-mangostin, a xanthone derivative derived from the 
pericarp of the Garcinia mangostana fruit. Gamma-mangostin's 
mechanisms of action are multifaceted, displaying inhibitory 
effects on viral entry into host cells, disrupting essential cell 
signalling pathways for viral replication, and enhancing the 
host's immune response via antiviral cytokine stimulation. This 
compound has demonstrated significant in vitro efficacy against 
numerous viruses, including Influenza A virus, Herpes simplex 
virus, and Hepatitis C virus, and emerging preliminary research 
suggests potential utility against SARS-CoV-2. Its broad-
spectrum antiviral properties and low cytotoxicity earmark 
gamma-mangostin as a promising candidate for future antiviral 
agent development. However, rigorous investigation is required 
to determine its pharmacokinetics, bioavailability, and safety 
profile. With the escalating burden of viral diseases, gamma-
mangostin could represent an important tool in the 
armamentarium for disease management, contingent upon 
further study. This review provides an overview of current 
research into gamma-mangostin's antiviral potential and the 
challenges to its therapeutic development. 
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Introduction 

The escalating incidence of viral diseases 

worldwide underscores the urgency of 

developing potent and effective antiviral 

agents. Conventional synthetic antiviral drugs 

often face limitations such as resistance 

development, restricted antiviral spectrum, 

and harmful side effects. Thus, the exploration 

for novel therapeutics with broad-spectrum 

antiviral activities and minimal adverse effects 

remains a critical research avenue [1-3]. 

Naturally derived compounds have 

demonstrated remarkable potential as 

antiviral agents, leveraging millennia of 

evolutionary interactions between plants, their 

pathogens, and their environment. These 

compounds, inherent in the complex matrices 

of botanicals, represent an untapped wealth of 

chemical diversity that could potentially be 

harnessed for therapeutic application against a 

wide array of viral diseases [2,3]. 

Among these natural compounds, the 

xanthone derivative gamma-mangostin, found 

in the pericarp of the mangosteen (Garcinia 

mangostana) fruit, has gained particular 

attention. This Southeast Asian native fruit, 

often referred to as the "Queen of Fruits," has 

been widely used in traditional medicine due 

to its numerous health-promoting properties, 

including anti-inflammatory, antibacterial, 

antioxidant, and anticancer activities [4-6]. 

Recent scientific studies have started to 

shed light on the potential antiviral properties 

of gamma-mangostin. This bioactive 

compound has shown remarkable antiviral 

activities against several viral species, 

demonstrating its capability to interfere with 

viral attachment, penetration, replication, and 

even stimulate the host's immune response 

[1,2]. These findings suggest that gamma-

mangostin could play a critical role in the on-

going battle against viral diseases. Its potential 

to inhibit the life cycle of various viruses in 

multiple stages, along with its immune-

modulating effects, make it a promising 

candidate for further research and 

development as an antiviral agent [3-5]. 

However, despite the promising in vitro 

results, comprehensive understanding of 

gamma-mangostin's pharmacokinetics, 

bioavailability, and safety profile is still in its 

nascent stages. The translatability of the in 

vitro efficacy to in vivo models and 

subsequently to clinical application requires 

rigorous, detailed investigation [6,7]. 

This mini-review aims to summarize and 

discuss the current knowledge on gamma-

mangostin's antiviral properties, its 

mechanisms of action, efficacy against various 

types of viruses, and the challenges and future 

prospects in its development as a potential 

antiviral agent. It is hoped that such a review 

could provide new insights and encourage 

further research on this promising natural 

compound in the quest for new antiviral 

therapies. 

Antiviral mechanisms of gamma-mangostin 

Gamma-mangostin, a naturally occurring 

xanthone derivative, has demonstrated 

intriguing antiviral potential across several 

studies. In the growing quest for antiviral 

therapeutics, understanding the mechanisms 

by which gamma-mangostin exercises its 

antiviral action is critical [8-10]. 

The initial barrier to viral infection is the 

viral entry into host cells, a process involving 

attachment and fusion with the host cell 

membrane. A key mechanism of action for 

gamma-mangostin appears to be at this early 

stage. Gamma-mangostin, by binding to viral 

surface proteins, can inhibit the attachment 

and subsequent fusion of the virus with the 

host cells. This effectively reduces the number 

of viruses able to gain entry into host cells, thus 

limiting the spread of the virus [11,12]. 

Beyond impeding viral entry, gamma-

mangostin has also demonstrated potential in 

disrupting the replication cycle of viruses 

(Figure 1). Many viruses, once inside a host 

cell, hijack cellular mechanisms to reproduce. 

Gamma-mangostin has shown promise in 
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disrupting these processes, preventing the 

successful replication of the viral genome and 

the assembly of new viral particles. This 

curtails the life cycle of the virus, thereby 

inhibiting its proliferation [13,14]. 

 

 
FIGURE 1 Gamma-mangostin demonstrated potential in disrupting the replication cycle of 

viruses (SARS-CoV-2) 

 

Additionally, gamma-mangostin is believed 

to modulate cell signalling pathways that are 

crucial to viral replication. It may inhibit the 

activation of key proteins in these pathways, 

thus effectively impairing the virus's ability to 

reproduce within the host cell. This represents 

another avenue by which the compound exerts 

its antiviral effect [15,16]. 

An important facet of the antiviral response 

is the role of the immune system in recognizing 

and eliminating the virus. Gamma-mangostin 

may also enhance the host's antiviral immune 

response. It is thought to stimulate the 

production of antiviral cytokines, proteins that 

mediate and regulate immune responses. 

These cytokines can enhance the body's 

defence against the virus, further aiding in the 

control of viral infections [13-15]. 

Though the aforementioned mechanisms 

paint a promising picture of gamma-

mangostin's antiviral potential, it is important 

to note that these mechanisms are often based 

on in vitro studies. The in vivo antiviral activity 

of gamma-mangostin, particularly its impact 

on viral infection and progression in a living 

organism, warrants further research [16,17].  

In conclusion, gamma-mangostin holds 

promise as a potent antiviral agent, showing 

multifaceted mechanisms of action against 

various viral species. These mechanisms offer 

the prospect of gamma-mangostin being a 

broad-spectrum antiviral agent with efficacy 

against different viruses. However, additional 

studies are essential to further unravel the 

intricate mechanisms and validate these 

antiviral activities in vivo [18,19]. 
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Efficacy against various viruses 

The exploration for novel antiviral agents has 

led scientists to the pericarp of the mangosteen 

fruit, where gamma-mangostin resides. This 

natural compound has shown significant 

promise against a range of viral pathogens, 

offering hope for broad-spectrum antiviral 

applications [20-22]. 

Investigations into the activity of gamma-

mangostin against the Influenza A virus have 

yielded promising results. Influenza, an acute 

respiratory infection, affects millions of 

individuals globally each year. Gamma-

mangostin's ability to inhibit the entry and 

replication stages of this virus provides a 

strong basis for its consideration as a potential 

treatment for Influenza [23-25]. 

Furthermore, studies examining the activity 

of gamma-mangostin against the Herpes 

simplex virus, a widespread virus causing oral 

and genital lesions have reported encouraging 

outcomes. By preventing the virus from 

entering host cells and disrupting its 

replication process, gamma-mangostin has 

shown potential as a viable treatment option 

for managing Herpes simplex infections 

[22,24]. 

Hepatitis C, a major cause of liver disease, 

poses a significant health challenge globally. 

Research conducted on the Hepatitis C virus 

has shown that gamma-mangostin may 

interfere with the replication cycle of this virus, 

demonstrating potential efficacy against this 

disease [20-22]. 

In addition, gamma-mangostin's potential 

extends to emerging viral threats. Preliminary 

research suggests that it may hold potential 

against SARS-CoV-2, the causative agent of 

COVID-19. Though the studies are at a nascent 

stage, any potential for combating this global 

pandemic warrants significant interest [23,24]. 

Furthermore, gamma-mangostin's antiviral 

activity extends beyond human pathogens. 

Studies have indicated its efficacy against 

feline infectious peritonitis virus, a fatal viral 

disease in domestic cats. This also highlights 

the compound's potential in the field of 

veterinary medicine [25-27]. 

These findings suggest a broad-spectrum 

antiviral effect of gamma-mangostin, which is 

an exciting prospect. However, it is crucial to 

remember that much of the current research 

on gamma-mangostin's antiviral effects is 

conducted in vitro [25,26]. 

Translating in vitro antiviral activity to 

effective in vivo applications is a complex 

process. Factors such as bioavailability, 

metabolism, potential toxicity, and 

pharmacokinetics need to be considered, all of 

which require thorough investigation [27-29]. 

Moreover, for a better understanding of 

gamma-mangostin's potential as an antiviral 

agent, well-designed animal, and human 

studies are essential. The observations from 

such studies will help assess the real-world 

applicability of gamma-mangostin as an 

antiviral agent [30]. 

Gamma-mangostin, with its broad-

spectrum antiviral activity, holds great 

promise in the fight against viral diseases. 

However, extensive research, including well-

controlled in vivo studies and clinical trials, is 

needed to fully realize its potential. 

Potential for future development 

The journey of gamma-mangostin from the 

tropical forests of Southeast Asia to the realm 

of antiviral research is an intriguing one. Its 

potent antiviral activity against various 

viruses, as revealed by numerous in vitro 

studies, indeed marks gamma-mangostin as a 

promising candidate for future antiviral drug 

development [31-33].  

However, the transition from in vitro 

success to clinical application is not without 

hurdles. One major challenge lies in the 

pharmacokinetic properties of gamma-

mangostin. As a naturally occurring compound, 

its absorption, distribution, metabolism, and 

excretion in the human body require thorough 

investigation. Understanding these properties 

is vital in determining the effective dosage, 
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route of administration, and potential side 

effects of gamma-mangostin as an antiviral 

agent [34-36]. 

The bioavailability of gamma-mangostin is 

another area that needs extensive research. 

The efficacy of a drug does not only depend on 

its ability to fight a disease-causing agent, but 

it also should be able to reach the target site in 

the body in sufficient concentration. 

Researchers need to determine how well 

gamma-mangostin is absorbed and distributed 

in the body to exert its antiviral effects [37-39]. 

The potential toxicity of gamma-mangostin, 

particularly at the effective antiviral 

concentrations, is an important aspect that 

needs consideration. Any adverse effects 

associated with its use must be carefully 

assessed against its potential therapeutic 

benefits. Rigorous preclinical toxicity studies 

are essential before gamma-mangostin can 

progress to clinical trials [40]. 

While current research has provided 

valuable insights into the antiviral activity of 

gamma-mangostin, there is a considerable gap 

in our understanding of its mechanism of 

action. Detailed molecular studies are required 

to elucidate the precise targets and pathways 

gamma-mangostin affects in its fight against 

viruses. Understanding these mechanisms will 

be crucial for optimizing its antiviral potential 

and minimizing potential side effects [41-43]. 

Despite these challenges, the development 

of gamma-mangostin as an antiviral agent is 

promising. Its broad-spectrum antiviral 

activity, combined with its potential for 

modulating immune responses, places it as a 

potential cornerstone in the treatment of viral 

diseases [44,45]. 

Efforts should be also directed towards the 

sustainable sourcing and production of 

gamma-mangostin. As a compound derived 

from the pericarp of the mangosteen fruit, 

sustainable cultivation of the plant, and 

efficient extraction methods should be 

developed to ensure a reliable supply of this 

potential antiviral agent [46-48]. 

In the face of the on-going global health 

challenges posed by viral diseases, the 

development of effective antiviral agents has 

never been more critical. Gamma-mangostin, 

with its promising antiviral properties, stands 

as a beacon of hope in this endeavour [49-51]. 

With continued research and development, 

and a careful consideration of the challenges 

ahead, gamma-mangostin could well be on its 

way to becoming an important tool in our 

antiviral armamentarium. However, as with 

any potential therapeutic, it is crucial that we 

remain guided by the principles of rigorous 

scientific inquiry and unwavering commitment 

to patient safety and efficacy [50-53]. 

While the road to the clinical application of 

gamma-mangostin is indeed challenging and 

long, the potential reward - a novel, effective, 

and broad-spectrum antiviral agent - makes 

this journey worth undertaking. 

Conclusion 

As the world grapples with the pervasive 

threat of viral diseases, the search for novel 

and effective antiviral agents remains a crucial 

task. Gamma-mangostin, a xanthone derivative 

from the pericarp of Garcinia mangostana, has 

emerged as a promising candidate, 

demonstrating in vitro antiviral efficacy against 

a diverse array of viruses. Despite the current 

gaps in understanding its detailed mechanism 

of action, bioavailability, and potential toxicity 

in vivo, the prospect of developing this natural 

compound into a broad-spectrum antiviral 

agent is intriguing and holds immense 

potential. However, it is crucial that this path is 

tread with rigorous scientific research and a 

patient-centric approach, ensuring both the 

efficacy and safety of gamma-mangostin as a 

future therapeutic agent. The journey ahead is 

challenging, but with unwavering dedication to 

research and innovation, gamma-mangostin 

could indeed illuminate a new path in the 

global battle against viral diseases. 
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