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Introduction 

COVID-19 or Coronavirus Disease has come to 

the global community’s attention, including 

Indonesia because it has caused respiratory 

disorders with high rates of transmission and 

death in more than 100 countries. Coronavirus 

(CoV) belongs to the family Coronaviridae, 

which can cause zoonotic diseases with 

common flu symptoms to severe and deadly. 

Coronavirus types that have spread and are 

known to cause infectious diseases in severe 

categories include the Middle East Respiratory 

Syndrome Coronavirus (MERS-CoV), Severe 

Acute Respiratory Syndrom Coronavirus 

(SARS-CoV), and most recently COVID-19 

disease caused by SARS-CoV 2. The pandemic 
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Protein target identification is a crucial part of drug discovery. 
This study used a machine learning approach to screen the 
potential target from marine natural products. A total of 6,314 
compounds from 11 marine taxa were collected from CMNPD or 
the Comprehensive Marine Natural Products Database as drug 
repurposing candidates for COVID-19. SARS-CoV-2 well 
identified proteins, including Spike, PLpro, Mpro, Nucleocapsid, 
ORF9b, ORF3a, and ORF8, are designed as protein targets. The 
supervised learning classification method that we use consists of 
three data processing, namely logistic regression (LR), super 
vector machine (SVM), and random forest (RF). Machine learning 
is carried out using algorithm found in scikit-learn. We also 
carried out a deep learning model approach and predict active 
compounds by applying the algorithm to h2o.ai. Finally, reverse 
docking approach was also used to get reliable result. The result 
revealed that compounds from bryozoan, sponge, and bacteria 
have the best binding affinity score for spike proteins. The best 
model of machine learning is the LR model. The compilation 
results of screening predictions from both machine learning and 
deep learning showed more consistent results and were proven 
to show more stable bond interactions than compounds that 
were predicted to have activity in just one of the screening 
methods. 
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is known to stem from a pneumonia outbreak 

in Wuhan City, China, at the end of 2019 [1].  

The problem is further complicated because 

there is still no effective treatment to treat this 

infectious disease, and even vaccine has 

already been successfully developed, 

treatment for COVID patients caused by the 

newest variant is still a major problem [2]. In 

addition, for about a year since the first case, 

the mutation of this virus is also known to be 

very fast and has formed several variants, 

namely alpha (B.1.1.7), beta (B.1.351), and 

gamma (P.1) to the newest variant with more 

fast transmission at this time is the delta 

(B.1.617.2) and lambda (C.37) variant [3]. The 

development and trial of new antiviral drugs 

and vaccines take a long time, so efforts to 

reposition drugs that have been approved by 

the Food and Drug Administration (FDA) are 

the best alternatives. However, relying too 

much on synthetic antiviral drugs is also 

considered to be less effective in its 

application, especially in most developing 

countries. So, looking for alternative antivirals 

from herbal bioactive compounds and other 

natural products can be a better solution, 

particularly bioactive from marine natural 

products, which have received much attention 

from international researchers from the early 

2000s the most potential sources of durable 

discovery [4,5]. In addition, Indonesia, as an 

archipelagic country affected by the pandemic, 

has a variety of natural marine natural 

products. Therefore, conducting drug 

discovery research from bioactive compounds 

of marine natural products is very suitable. 

Several studies have suggested the concept 

of stabilizing effective interactions proteins in 

the discovery and development of antivirals 

[6,7,8]. This in silico approach can significantly 

reduce the time and cost of drug development, 

especially the toxicity and pharmacokinetic 

profile of such drugs that are widely known 

and tested. However, if the sample being 

screened is a bioactive compound, a new 

problem will arise. The problem is the total 

number of bioactive compounds that are very 

large for each source of the organism. Thus, a 

machine learning approach is needed to 

simplify the screening process and increase the 

statistical confidence score of the selection of 

compounds that are predicted to have efficacy.  

Methods 

Ligand datasets 

Candidates for bioactive compounds, including 

6,314 compounds from 11 taxa, were collected 

from CMNPD or the Comprehensive Marine 

Natural Products Database (http:/ 

https://www.cmnpd.org/) [9]. These taxa 

include green algae, red algae, brown algae, 

fungi, bacteria, echinoderms, ascidian, 

mollusks, bryozoans, cnidarians, and sponges. 

Furthermore, the 3D structures of the drug 

compounds were collected in SDF format from 

PubChem (https://pubchem.ncbi.nlm.nih.gov) 

database [10]. The antiviral function scores of 

each compound were predicted and collected 

from pass online software 

(http://www.way2drug.com/PASSOnline/) 

[11].  

SARS-CoV-2 protein target 

As we did in previous research, we studied the 

genome structure of SARS-CoV-2 and the 

resulting proteins. The genome size of SARS-

CoV-2 ranges from 29,903 bp (NC_045512.2). 

SARS- CoV-2 has four structural proteins, 16 

non-structural proteins, and 9 accessory 

proteins [12]. From the screening results, there 

were 14 protein structures from SARS-CoV-2 

that we used as molecular docking repurposing 

targets. In addition, we used the ACE2 protein 

structure of humans as a target. The binding 

affinity results showed that only 8 of the 14 

proteins used had good and significant results 

[13]. These proteins are Spike, PLpro, Mpro, 

Nucleocapsid, ORF9b, ORF3a, ORF8, and ACE2. 

Each structure of those proteins was 

downloaded from the RCSB Database of PDB 

(https://www.rcsb.org/) [14] in format (.pdb) 

(Table 1). 

https://www.cmnpd.org/
http://www.way2drug.com/PASSOnline/
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TABLE 1 List of protein targets for virtual screening 

No. Macromolecules 
PDB 

ID 
Method Resolution 

Seq 
Length 

Positions Chains Ref. 

1 
Spike Protein 
(prefusion) 

6VSB EM 3.46 Å 1288 1-1208 A/B/C [12] 

2 nsp3/PLpro 6WX4 XRD 1.66 Å 326 
1562-
1879 

D [16] 

3 Mpro/nsp5/3CLpro 7BQY XRD 1.70 Å 306 
3264-
3569 

A [15,16] 

4 
Nucleocapsid 

Protein 
6M3M XRD 2.70 Å 136 41-174 A/B/C/D [12] 

5 orf9b 6Z4U XRD 1.95 Å 97 1-97 A/B [12] 
6 orf3a 6XDC EM 2.90 Å 284 1-275 A/B [17] 
7 orf8 7JTL XRD 2.04 Å 107 18-121 A/B [18] 
8 ACE2 6M18 EM 2.90 Å 814  B, D [17] 

 

Ligands screening using machine deep learning 

The feature extraction process is carried out 

according to data on types of drugs (small 

molecules/drugs) compounds that have the 

potential to be selected based on the clinical 

trial level, clinical trial level. Drugs or 

compounds with the best clinical test results 

were used as active compounds (molecules) 

for machine learning. The active compound 

was then combined with the decoy compound 

(fake) from DUDE Docking 

(www.dude.docking.org) [19]. A total of 300 

decoys from and DUD-E was then combined 

with 96 selected active compounds for further 

feature extraction into the Klekota-Roth .csv 

bit fingerprint column (with a total of 2048 

fingerprints). 

The supervised learning classification 

method that we use consists of three data 

processing, namely logistic regression (LR), 

super vector machine (SVM), and random 

forest (RF). Machine learning was carried out 

using jupyter notebook with a machine 

learning algorithm found in scikit-learn 

(https://scikit-learn.org/stable/) with the 

distribution of training and testing from data 

with a proportion of 70% training and 30% 

testing [20]. We also carried out a deep 

learning model approach and predicted active 

compounds by applying the algorithm to 

h2o.ai (https://docs.h2o.ai/h2o/latest-

stable/h2o-docs/data-science/deep-

learning.html) with the distribution of training 

and testing from data with a proportion of 

70% training and 30% testing [21]. The deep 

learning was applied using a double hidden 

layer, where the first hidden layer has 400 

nodes and the second hidden layer has 100 

nodes, with data loops (epochs = 500). 

Confirmation tests in the form of accuracy, 

precision, and area under the curve 

(AUC/ROC) were calculated based on the 

sensitivity and specificity values, to determine 

the accuracy of the model. 

Preparation of ligands macromolecules 

Protein preparation was performed using 

Discovery Studio 2021 program by BIOVIA. 

Water molecules and ligands were removed 

from the 3D structures. The prepared 

structures were saved back in PDB format. 

Furthermore, the preparation process was 

also carried out on ligands using PyRx 0.9.8 

software to lower or minimize the free energy 

of the ligands as well as convert compounds 

into AutoDock ligands. The pre-prepared 

ligands were then saved in PDB format. 

Molecular docking and visualization of protein-

ligand interaction 

The docking process is carried out using an 

inverse docking approach. The first group of 

ligands was 675 compounds that were 

predicted to have antiviral activity in both 

machine learning and deep learning 

http://www.dude.docking.org/
https://scikit-learn.org/stable/
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prediction methods. There were also the 

second group of 665 compounds predicted to 

have antiviral activity in either machine 

learning or deep learning prediction method. 

This process was carried out with the help of 

the AutoDock Vina 1.1 program from Pyrx 

0.9.8 Software [22,23]. After docking was 

complete, the results were saved in PDB 

format and then visualized and interpreted 

using PyMOL v.2.3.2.1, and Discovery Studio 

2021 Client. 

Results and discussion 

Virtual screening using machine learning and 

deep learning 

Each of the used machine learning methods, 

LR, SVM, and RF, showed different results. LR 

appeared as the best model for data testing 

among others with an accuracy of 0.879 

(88%), while SVM and RF resulted in 0.822 

(82%) and 0.839 (84%) for the accuracy, 

respectively. The LR sensitivity was 0.889 

(89%), while for SVM and RF were 0.889 

(89%) and 0.846 (85%). For AUC, LR also had 

the best result with 0.915 (91%), while SVM 

and RF had 0.896 (89%) and 0.834 (83%), 

respectively. To increase the predictive ability 

and add a comparison to the machine learning 

models, we also used the deep learning 

method for screening the ligands. The results 

showed that our deep learning model had very 

good scores with an accuracy value of 0.87 

(87%), a precision of 1.0 (100%), and a 

specificity of 1.0 (100%). Following these 

results, we acquired the AUC of 0.904 (90%) 

with an area under the Precision-Recall Curve 

of 0.968 (97%). 

Molecular docking as confirmation test 

Out of the 675 bioactive compounds used in 

molecular docking, bioactive compounds from 

bryozoans and sponges showed the most 

negative binding affinity values for almost all 

molecular targets, except for ORF9b and 

ORF3a targets (Table 2). Therefore, we chose 

two targets with the most potential and most 

used as targets for antiviral drug discovery, 

Spike and Mpro [24]. Furthermore, the 

pipeline confirmation was carried out 

whether the active compound predicted to be 

active in both ligand-based screening 

methods, both machine learning and deep 

learning (BM), had a better binding affinity 

than the compound predicted to be active only 

in one of the screening methods (OM), 

machine learning (M) or deep learning (D). 

 

TABLE 2 Binding affinity values of active compounds predicted to be active by both machine 

learning and deep learning methods (BM) 

No. Target Protein Binding Affinity (Kcal/mol) Source Organism 

1 Spike (S) -8.9 Bryozoan 

2 NSP3 (PLpro) -7.7 Bryozoan 

3 NSP5 (Mpro) -8.3 Sponge 

4 Nucleocapsid Protein (N) -9.5 Sponge 

5 ORF9b -9.6 Fungi 

6 ORF3a -8.6 Fungi 

7 ORF8 -9.3 Sponge 

8 ACE2 (human) -9.2 Bryozoan 

 

Based on the docking results, compounds 

from bryozoan, sponge, and bacteria showed 

the best binding affinity score for spike 

proteins. Meanwhile, in terms of the way the 

compounds were screened, it was noticed that 

the BM method had better results except for 

bacteria. The binding affinity scores of the BM 

method were almost all better than the OM 

method, wherein the bryozoan was -8.9 

kcal/mol compared to -8.6 kcal/mol, in 
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sponges -8.8 kcal/mol compared to -8.6 

kcal/mol. moles, except for bacteria which 

both have a score of -8.6 kcal/mol (Table 3). In 

addition, the OM method shows inconsistent 

results, where the deep learning (D) sponge 

method predicts the activity described by the 

binding affinity score better than machine 

learning (K). However, on bacteria and 

bryozoan machine learning shows better 

predictions. 

 

TABLE 3 Binding affinity values between Spike and top five active compounds that predicted to 

be active by both methods (BM and OM) 

Source Bioactive 
Binding Affinity 

(Kcal/mol) 

BM OM BM OM BM OM 

Bryozoan 
D_ 

Sponge 
7-

Ketocholesterol 
6-Oxofascaplysin -8.9 -8.6 

Sponge 
M_ 

Bacteria 
Xestosaprol M Amycocyclopiazonic Acid -8.8 -8.6 

Bacteria 
M_ 

Bryozoan 
Shewanelline C Flustramine M -8.6 -8.6 

Sponge 
M_ 

Bacteria 
Tedarene A 

(16Z)-4,11-Dimethyl-1,8-
Diazatetracyclo [6.6.4.02,7.09,14] 
Octadeca-2(7),3,5,9(14),10,12,16-

Heptaene-15,18-Dione 

-8.5 -8.5 

Sponge 
D_ 

Sponge 
Cinanthrenol A (+)-Frondosin B -8.5 -8.5 

 

For Mpro, compounds predicted to have the 

best affinity are originated from distinct 

profile of organisms, including bryozoans, 

sponges, and molluscs, to spikes. In addition, 

there are compounds from sponges, only 

predicted from deep learning method, that 

have a binding affinity score much better than 

the top five compounds from the BM method. 

However, both methods showed that the 

compound from the sponge was the most 

potent compound where the score from the 

BM method was -8.3 kcal/mol, much higher 

than the OM method, which was -8.8 kcal/mol. 

In addition to compounds from sponges, 

compounds from molluscs also showed that 

the OM method had a lower binding affinity 

score than BM, which was -8.2 kcal/mol 

compared to -8 kcal/mol (Table 4). While 

compounds from bryozoans showed better 

results where the BM method had a lower 

score, namely -8.2 kcal/mol compared to -8 

kcal/mol. However, the equation that is still 

visible is the inconsistent results of the OM 

method, where deep learning (D) shows that 

compounds from sponges and molluscs are 

better than machine learning methods. 

Furthermore, bryozoan shows that the 

machine learning (M) method is better. These 

results also support the results of the spike 

where sponge activity is better predicted by 

the deep learning (D) method, while the 

bryozoan is better predicted by the machine 

learning (M) method. 
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TABLE 4 Binding affinity values between Mpro and top 5 active compounds that predicted to be 

active by both methods (BM and OM) 

Source of organism Compound name 
Binding Affinity 

(Kcal/mol) 

BM OM BM OM BM OM 
Sponge D_ 

Sponge 
Xestosaprol M Meridine -8.3 -8.8 

Bryozoan D_ 
Mollusca 

7-Ketocholesterol Kuanoniamine A -8.2 -8.2 

Bryozoan M_ 
Bryozoan 

(3S,7R,8S,9S,10R,13R,14S,17R)-7-
methoxy-10,13-dimethyl-17-
[(E,2R)-6-methylhept-3-en-2-yl]-
2,3,4,7,8,9,11,12,14,15,16,17-
dodecahydro-1H-
cyclopenta[a]phenanthren-3-ol 

Flustramine M -8 -8 

Mollusca D_ 
Sponge 

(22Z)-3α,24ζ,25-
trihydoxycholesta-5,22-diene 

6-Oxofascaplysin -8 -7.8 

Bacteria  D_ 
Sponge 

Shewanelline C Frondosin B -7.9 -7.8 

 

Even though some exceptions showed that 

the binding affinity score of the OM method is 

lower, in general, the results of each deep 

learning and machine learning have different 

tendencies for different sources of organisms 

or can also change according to groups of 

compounds (Figure 1). Therefore, we 

recommend using the BM method because it is 

more consistent than the OM method. 

However, in Mpro, the distribution of 

interacting ligands was divided into two 

groups, with lower binding affinity found in 

the interactions that occur in the core protein. 

While the inhibitor site in the previous study 

was shown in the outer region, where the N3 

inhibitor formed a bond [15,25]. Based on 

these results, we also visualized and analyzed 

the BM and OM ligands administered with the 

inhibitor site, namely Shewanelline C (Figure 

6) and Flustramine M (Figure 7). Based on the 

results of this second group, it can be seen that 

although the binding affinity formed between 

the OM ligands is lower than the BM ligands, 

the OM ligand in the form of Flustramine M 

does not form hydrogen bonds so it can be 

predicted that the interactions formed will be 

less strong and less stable. 

 
FIGURE 1 Binding sites of top 5 ligands from the BM (Red) and OM (Green) methods against (a) 

spike and (b) Mpro 
 



P a g e  | 1105  Applying machine learning to define best …  
  

The visualization results also support the 

conclusion that the BM method is more 

accurate in predicting the activity of 

compounds as ligands when used as antivirals. 

This can be seen from the interaction that is 

formed, where the results of OM on the spike 

target form an unfavorable bond which can 

make the ligand-receptor interaction less 

stable (Figure 3b). Meanwhile, in Mpro 

protein, the ligand interactions of the BM 

method only form one type of hydrogen bond 

(Figure 4b) as the OM ligands form 

hydrophobic interactions (Figure 5b). 

Therefore the binding affinity of the OM ligand 

is lower than that of the BM ligand. However, 

the four interactions formed in the BM 

complex will increase the stability of the bond 

between Xetosaprol M and Mpro. According to 

the visualization results on the hydrophobicity 

diagram, all ligands form a type of 

hydrophobic interaction with amino acids that 

are both hydrophobic and hydrophilic. Surface 

hydrophobicity is shown based on the colour 

of the protein surface with brown indicating 

hydrophobic, white (intermediate), and 

hydrophilic as blue color. The more 

hydrophobic the resulting interaction, the 

more stable the conformation of the complex. 

 

 
 

FIGURE 2 Binding sites of top 5 ligands from the BM (Red) and OM (Green) methods against (a) 

spike, (b) Mpro 

 

 
 

FIGURE 3 The most potent OM ligand interactions are compounds 6-Oxofascaplysin to spike 

protein in terms of (a) hydrophobicity diagram and (b) 2D diagram of non-bond 
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FIGURE 4 The most potent BM ligand interactions are compounds Xestosaprol M to Mpro protein 

in terms of (a) hydrophobicity diagram and (b) 2D diagram of non-bond 

 

 
 

FIGURE 5 The most potent OM ligand interactions are compounds Meridine to Mpro protein in 

terms of (a) hydrophobicity diagram and (b) 2D diagram of non-bond 

 

 
  

FIGURE 6 The most potent BM ligand interactions are compounds Shewanelline C to Mpro 

protein in terms of (a) hydrophobicity diagram and (b) 2D diagram of non-bond 
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FIGURE 7 The most potent OM ligand interactions are compounds Flustramine M to Mpro protein 

in terms of (a) hydrophobicity diagram and (b) 2D diagram of non-bond 

 

Based on the analysis of the amino acid 

residues that make up the binding site on each 

target protein, it showed that the binding site 

of the spike protein is quite large because it 

consists of 4 functional domains so that the 

distribution of the ligand positions varies 

(Figure 1a). However, in general, ligands that 

are predicted to have antiviral activity will 

bind between the B and C domains of the spike 

(Figures 2 and 3). Meanwhile, the Mpro 

protein showed a smaller binding site where, 

there were two groups, namely the inhibitor 

site which was the same as the N3 inhibitor 

[15,25] and the alternative active site that we 

found, based on the molecular docking results, 

with a lower binding affinity value than the N3 

inhibitor site. The inhibitor site residues that 

were found to interact with each of the most 

potent compounds were Met165, Phe140, 

His164, Glu166, Asp187, Arg188, and Gln189. 

In addition, amino acid residues Asn151, 

Val104, Asp153, Thr292, and Phe294 were 

also found to form interactions in the two most 

potent ligands which were predicted to be 

alternative active sites of Mpro (Table 5).

TABLE 5 Amino acids that form binding sites in the most potent complexes for each target and 

screening method 

Protein 
Target 

Compound 
Hydrogen 

Bond 
Position 

Hydrophobic 
Interaction 

van der 
Waals 

Unfavorable 
Bond 

BM_Spike 7-Ketocholesterol  B:LEU752 

B:GLN755, 
B:PRO986, 
B:PRO987, 
B:GLU990 

 

OM_Spike 6-Oxofascaplysin 

C:ASP994, 
B:ARG995, 
B:THR998, 
C:TYR756 

B:THR998 
B:PHE970, 
B:GLY999, 

B:GLN1002 
B:ARG995 

BM_Mpro Xestosaprol M A:ASN151 

A:PHE8, 
A:ARG298, 
A:ILE106, 
A:VAL104 

A:GLN110, 
A:THR111, 
A:ASN151, 
A:ILE152, 

A:ASP153, 
A:SER158, 
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A:THR292, 
A:PHE294, 
A:ASP295 

OM_Mpro Meridine 

A:GLN110, 
A:THR111, 
A:ASP295, 
A:ASN151, 
A:SER158 

A:VAL104 

A:PHE8, 
A:ILE106, 

A:ASP153, 
A:THR292, 
A:PHE294, 
A:ARG298 

 

BM_Mpro Shewanelline C 
A:ASN142, 
A:CYS145 

A:HIS41, 
A:LEU141, 
ASN142, 

A:MET165 

A:PHE140, 
A:HIS163, 
A:HIS164, 
A:GLU166, 
A:HIS172, 
A:ASP187, 
A:ARG188, 
A:GLN189 

 

OM_Mpro Flustramine M  
A:MET165, 

A:HIS41, 
A:HIS163 

A:MET49, 
A:PHE140, 
A:LEU141, 
A:SER144, 
A:CYS145, 
A:HIS164, 

A:GLU166, 
A:LEU167, 
A:PRO168, 
A:ASP187, 
A:ARG188, 
A:GLN189, 
A:THR190 

 

 

In addition, several studies have also tested 

the efficacy of 7-Ketocholesterol as a 

treatment for the corona virus [26-30]. These 

results once again show that the BM method 

produces better predictions. For 6-

Oxofascaplysin, the study is limited, but some 

reported that this compound has a cytotoxic 

activity against NFF cells and antiproliferative 

against human immune cells [31]. Meridine 

has been widely studied for the treatment of 

several diseases, such as liver [32], antitumor 

[33], and also antifungal [34,35]. While the 

efficacy of Xestosaprol M, Shewanelline C, and 

Flustramine M has not been studied. 

Conclusion  

The best model of machine learning is the LR 

model. The compilation results of screening 

predictions from both machine learning and 

deep learning show more consistent results 

and are proven to show more stable bond 

interactions than compounds that are 

predicted to have activity in just one of the 

screening methods. 
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