Document Type : Review Article

Authors

1 Department of Anesthesiology and Reanimation, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

2 Master's Level Clinical Medicine Study Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

10.48309/jmpcr.2024.449596.1151

Abstract

The administration of general anesthesia through inhalation is a frequently employed method. The volatile anesthetic substance known as sevoflurane is believed to possess nephrotoxic properties due to its metabolites, including fluoroacetic acid and molecule A. The combination of low fresh gas flow and elevated concentrations of sevoflurane within the respiratory circuit, along with its passage via the CO2 absorbent, results in heightened degradation of sevoflurane, hence increasing the risk of renal tubule injury. NGAL expression in healthy kidneys is mostly produced by proximal tubular epithelial cells and is primarily located in the loop of Henle and distal tubules of the kidney. NGAL is crucial in controlling cell proliferation, facilitating healing processes, and promoting tubular re-epithelialization following kidney injury. Increased NGAL levels are indicative of acute renal injury. Segrepsis, chronic obstructive pulmonary disease, and cardiac failure are conditions that can disrupt the performance, sensitivity, and specificity of NGAL as a biomarker for renal tubular injury. Age seems to have an impact on the performance of the NGAL biomarker. The NGAL examination can be conducted using either urine or plasma samples, yielding comparable outcomes. The receiver operating characteristic (ROC) curve for urine NGAL in predicting acute renal injury was 0.998, while for plasma NGAL it was 0.91. The NGAL examination is based on the utilization of monoclonal antibodies. The ELISA approach is commonly employed in the majority of NGAL testing conducted for research purposes. One of the benefits associated with NGAL is its non-invasive nature, rapidity, and sensitivity in facilitating early detection.

Graphical Abstract

Neutrophil gelatinase associated lipocalin as biomarker in predicting acute renal tubular injury following general anesthesia with sevoflurane on low-flow anesthesia

Keywords

Main Subjects

[1] A.L. Hayu, E. Hanindito, H. Hamzah H, A. Utariani, Effectiveness of high-flow inhalation anesthesia technique using isoflurane compared to low-flow inhalation anesthesia technique using sevoflurane and isoflurane in terms of cost and safety, Bali Journal of Anesthesiology, 2019, 3, 170–173. [Crossref], [Google Scholar], [Publisher]‎
[2] F. Ratsmita, M. Ilyas, Biomonitoring of sevoflurane exposure in anesthesiologist, The Indonesian Journal of Public Health, 2021, 16, 57–69. [Crossref], [Google Scholar], [Publisher]‎
[3] M.E. Grams, Y. Sang, J. Coresh, S. Ballew, K. Matsushita, M.Z. Molnar, Z. Szabo, K. Kalantar-Zadeh, CP. Kovesdy, Acute kidney injury after major surgery: A retrospective analysis of veterans health administration data, American Journal of Kidney Diseases, 2016, 67, 872–880. [Crossref], [Google Scholar], [Publisher]‎
[4] A. Zarbock, M.K. Nadim, P. Pickkers, H. Gomez, S. Bell, M. Joannidis, K. Kashani, J.L. Koyner, N. Pannu, M. Meersch, T. Reis, T. Rimmelé, S.M. Bagshaw, R. Bellomo, V. Cantaluppi, A. Deep, S. De Rosa, X. Perez-Fernandez, F. Husain-Syed, S.L. Kane-Gill, Y. Kelly, R.L. Mehta, P.T. Murray, M. Ostermann, J. Prowle, Z. Ricci, E.J. See, A. Schneider, D.E. Soranno, A. Tolwani, G. Villa, C. Ronco, L.G. Forni, Sepsis-associated acute kidney injury: consensus report of the 28th acute disease quality initiative workgroup, Nature Reviews Nephrology, 2023, 19, 401–417. [Crossref], [Google Scholar], [Publisher]‎
[5] K. Harimin, T. Bisri, Efek anestesia aliran rendah sevofluran terhadap respon inflamasi pada susunan saraf pusat, Jurnal Neuroanestesi Indonesia, 2014, 3, 121–31. [Crossref], [Google Scholar], [Publisher]‎
[6] S.A. Price, Patofisiologi: konsep klinis proses-proses penyakit, Universitas Indonesia Library, 2006, 1. [Crossref], [Google Scholar], [Publisher]‎
[7] R. Sivaci, S. Demir, T. Koken, Y. Sivaci, S. Yilmaz, Biochemical effects of low-flow anesthesia with inhalation agents in patients undergoing laparoscopic surgery,  Journal of Medical Biochemistry2012, 31, 53-59. [Crossref], [Google Scholar], [Publisher]‎
[8] R. Ghatanatti, A. Teli, S.S. Tirkey, S. Bhattacharya, G. Sengupta, A. Mondal, Role of renal biomarkers as predictors of acute kidney injury in cardiac surgery, Asian Cardiovascular and Thoracic Annals, 2014, 22, 234–241. [Crossref], [Google Scholar], [Publisher]‎
[9] S.A. Rampengan, Cardiorenal syndrome type 1: a literature review, Bali Medical Journal, 2019, 8, 537-541. [Crossref], [Google Scholar], [Publisher]‎
[10] C. Thongprayoon, P. Hansrivijit, K. Kovvuru, S.R. Kanduri, A. Torres-Ortiz, P. Acharya, M.L. Gonzalez-Suarez, W. Kaewput, T. Bathini, W. Cheungpasitporn, Diagnostics, risk factors, treatment and outcomes of acute kidney injury in a new paradigm,  Journal of Clinical Medicine, 2020, 9, 1104. [Crossref], [Google Scholar], [Publisher]‎
[11] MR. Kurniawan, E. Kusrini,  Ureum and creatinine health study in patient diabetes mellitus, Indonesian Journal of Medical Laboratory Science and Technology, 2020, 2, 85-92. [Crossref], [Google Scholar], [Publisher]‎
[12] K.  Wang, S. Xie, K. Xiao, P. Yan, W. He, L. Xie, Biomarkers of sepsis-induced acute kidney injury, BioMed Research International, 2018, 2018, 6937947. [Crossref], [Google Scholar], [Publisher]‎
[13] F.F. Luft, Biomarkers and predicting acute kidney injury, Acta Physiologica (Oxford, England), 2021, 231, 13479. [Crossref], [Google Scholar], [Publisher]‎
[14] A. Syadiah, E. Febrina, L. Levita, Review neutrophil gelatinase-associated lipocalin (ngal): perannya sebagai biomarker pada kerusakan ginjal akut, Jurnal Sains Farmasi & Klinis, 2021, 8, 35-42. [Crossref], [Google Scholar], [Publisher]‎
[15] J. Mårtensson, R. Bellomo, The rise and fall of NGAL in acute kidney injury, Blood Purification, 2014, 37, 304–310. [Crossref], [Google Scholar], [Publisher]‎
[16] K. Mori, H.T. Lee, D. Rapoport, I.R. Drexler, K. Foster, J. Yang, K.M. Schmidt-Ott, X. Chen, J.Y. Li, S. Weiss, J. Mishra, Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury, The Journal of Clinical Investigation, 2005, 115, 610-621. [Crossref], [Google Scholar], [Publisher]‎
[17] H. Cassidy, J. Slyne, M. Higgins, R. Radford, P.J. Conlon, A.J. Watson, M.P. Ryan, T. McMorrow, C. Slattery, Neutrophil gelatinase-associated lipocalin (NGAL) is localised to the primary cilium in renal tubular epithelial cells-a novel source of urinary biomarkers of renal injury, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2019, 1865, 165532. [Crossref], [Google Scholar], [Publisher]‎
[18] P. Devarajan, NGAL for the detection of acute kidney injury in the emergency room, Biomarkers In Medicine, 2014, 8, 217–219. [Crossref], [Google Scholar], [Publisher]‎
[19] A. Clerico, C. Galli, A. Fortunato, C. Ronco, Neutrophil gelatinase-associated lipocalin (NGAL) as biomarker of acute kidney injury: a review of the laboratory characteristics and clinical evidences, Clinical Chemistry and Laboratory Medicine, 2012, 50, 1505–1517. [Crossref], [Google Scholar], [Publisher]‎
[20] K.  Makris, D. Stefani, E. Makri, I. Panagou, M. Lagiou, A. Sarli, M. Lelekis, C. Kroupis, Evaluation of a particle enhanced turbidimetric assay for the measurement of neutrophil gelatinase-associated lipocalin in plasma and urine on Architect-8000: Analytical performance and establishment of reference values, Clinical Biochemistry, 2015, 48, 1291-1297. [Crossref], [Google Scholar], [Publisher]‎
[21] V. Pennemans, J.M. Rigo, C. Faes, C. Reynders, J. Penders, Q. Swennen, Establishment of reference values for novel urinary biomarkers for renal damage in the healthy population: are age and gender an issue?, Clinical Chemistry And Laboratory Medicine, 2013,  51, 1795-1802. [Crossref], [Google Scholar], [Publisher]‎
[22] K. Helanova, J. Spinar, J. Parenica, Diagnostic and prognostic utility of neutrophil gelatinase-associated lipocalin (NGAL) in patients with cardiovascular diseases—review, Kidney Blood Press Res, 2014, 39, 623–629. [Crossref], [Google Scholar], [Publisher]‎
[23] N.S. Budi, A. Arie Utariani, E. Hanindito, B.P. Semedi, N. Asmaningsih, The validity of urinary neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker of acute kidney injury in pediatric patients with sepsis, Critical Care Shock2021, 24. [Google Scholar], [Publisher]‎
[24] W. Vandenberghe, J. De Loor, E.A. Hoste, Diagnosis of cardiac surgery-associated acute kidney injury from functional to damage biomarkers, Current Opinion in Anesthesiology2017, 30, 66–75.  [Crossref], [Google Scholar], [Publisher]‎
[25] N. Tidbury, N. Browning, M. Shaw, M. Morgan, I. Kemp, B. Matata, Neutrophil gelatinase-associated lipocalin as a marker of postoperative acute kidney injury following cardiac surgery in patients with preoperative kidney impairment, Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders)2019, 19, 239-248. [Crossref], [Google Scholar], [Publisher]‎
[26] J.H. Greenberg, M. Zappitelli, Y. Jia, H.R. Thiessen-Philbrook, C.A. De Fontnouvelle, F.P. Wilson, S. Coca, P. Devarajan, C.R. Parikh, Biomarkers of AKI progression after pediatric cardiac surgery,  Journal of the American Society of Nephrology2018, 29, 1549-1556. [Crossref], [Google Scholar], [Publisher]‎
[27] K.M. Tecson, E. Erhardtsen, P.M. Eriksen, A.O. Gaber, M. Germain, L. Golestaneh, M. de los Angeles Lavoria, L.W. Moore, P.A. McCullough, Optimal cut points of plasma and urine neutrophil gelatinase-associated lipocalin for the prediction of acute kidney injury among critically ill adults: retrospective determination and clinical validation of a prospective multicentre study, BMJ Open2017, 7, 16028. [Crossref], [Google Scholar], [Publisher]‎
[28] T.  Rubinstein, M. Pitashny, B. Levine, N. Schwartz, J. Schwartzman, E. Weinstein, J.M. Pego-Reigosa, T.Y.T. Lu, D. Isenberg, A. Rahman, C. Putterman, Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis, Rheumatology2010, 49, 960-971. [Crossref], [Google Scholar], [Publisher]‎
[29] A.N. Saputra, P.S. Airlangga, B.A. Rahman, E. Kusuma, P. Kriswidyatomo, C. Sumartomo, Role of neutrophil gelatinase-associated lipocalin (NGAL) as a acute prerenal kidney injury marker: Exploring factors associated with its postoperative levels in hypotension-controlled otorhinolaryngology surgery, Bali Medical Journal2022, 11, 1844-1848. [Crossref], [Google Scholar], [Publisher]‎
[30] J.F. Butterworth IV, D.C. Mackey, J.D. Wasnick, Inhalation anesthetics, Morgan & Mikhail’s Clinical Anesthesiology, New York, NY: McGraw-Hill Education, 2013.  [Google Scholar], [Publisher]‎
[31] P.D.D. RehI, Comparison of cost-effectiveness analysis (CEA) between sevoflurane inhalation anesthetic and propofol total intravenous anesthesia (TIVA) in craniotomy surgery: A literature review, Bali Medical Journal, 2023, 12, 1790-1795. [Google Scholar], [Publisher]‎
[32] M. Upadya, P.J. Saneesh, Low-flow anaesthesia- underused mode towards ‘sustainable anaesthesia’, Indian Journal of Anaesthesia, 2018, 62, 166–172. [Crossref], [Google Scholar], [Publisher]‎
[33] C. Hönemann, B. Mierke, Low-flow, minimal-flow and metabolic-flow anaesthesia. Clinical techniques for use with rebreathing systems, Drägerwerk AG&Co. Lübeck, Germany, 2014. [Google Scholar], [Publisher]‎
 [34] B.A. Gentz, T.P. Malan, Renal toxicity with sevoflurane: a storm in a teacup?, Drugs,  2001, 61, 2155–2162. [Crossref], [Google Scholar], [Publisher]‎
[35] A.N.M. Ansori, M.H. Widyananda, Y. Antonius, A.A.A. Murtadlo, V.D. Kharisma, P.A. Wiradana, S. Sahadewa, F.D. Durry, N. Maksimiuk, M. Rebezov, R. Zainul, A review of cancer-related hypercalcemia: Pathophysiology, current treatments, and future directions, Journal of Medicinal and Pharmaceutical Chemistry Research2024, 6, 944-952. [Crossref], [Pdf], [Publisher]‎