Document Type : Original Research Article


1 Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Baku, Azerbaijan

2 Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St, Moscow, Russian Federation, 119991

3 Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan

4 Department of Biochemistry, Azerbaijan Medical University, Baku, Azerbaijan

5 Department of Biophysics, Moscow State University, Moscow, Russia

6 Maragheh University of Medical Sciences, Maragheh, Iran


The article is devoted to the study of the leaves of the fig (Ficus carica L.) tree is one of the most valuable trees of the Absheron Peninsula (Azerbaijan). Research on fig leaves growing in Mardakan and Nardaran areas of Absheron has been carried out on EPR spectrometer. Studies have shown that stressors cause the formation of nanophase particles of biogenic origin in living systems. These nanoparticles lead to the formation of magnetic properties in biological systems and the formation of the broad EPR signal that we first discovered in plants. It was found that the magnetic properties depend on the type of plant and the environmental conditions in which they live and the characteristics of EPR signals characterizing magnetic nanoparticles (amplitude, signal width, g factor, etc.) are strongly dependent on temperature and that this signal has magnetic anisotropy. Studies of fig leaves have shown that as a result of biomineralization under stress, they form magnetic nanoparticles of iron oxide. In addition, the high intensity of the broad EPR signal characteristic of nanophase magnetic particles detected in fig leaves growing in Mardakan area (Azerbaijan) indicates that the plant system in this area is more exposed to pollutants and the area is more environmentally polluted than Nardaran Area (Azerbaijan). The characteristic verve phase transition occurs at a temperature of 120-125 K in the behavior of parameters such as the amplitude of the magnetic resonance signal and the width of the magnetic resonance line. The results were confirmed by the messabauer method.

Graphical Abstract

Identification of the EPR signals of fig leaves (Ficus carica L.)


Main Subjects

[1] H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, J Colloid Interface Sci., 2019, 554, 603-610.
[2] R. Emamian, M. Ebrahimi, H. Karimi-Maleh, J. of The Electrochem. Society, 2018,165 B762. 14.
[3] N.S. Sarvestani, M. Tabasizadeh, M.H.          Abbaspour-Fard, H. Nayebzadeh, H. Karimi-Maleh, Fuel, 2020, 272, 117728.
[4] S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Russ. Chem. Rev.2005, 74, 489-520.
[5] M. Giersig, G.B. Khomutov eds., Nanomaterials for application in medicine and biology, 2008, 99, Dordrecht: Springer.
[6] G.B. Khomutov, K.V. Potapenkov, Y.A. Koksharov, B.V. Trubitsin, A.N. Tikhonov, M.D. Mamedov, A.N. Nasibova, S.M. Ismailova, R.I. Khalilov, XII Int. Conf. on Nanostructured Materials (Nano-2014). Moscow, Russia, 2014.
[7] R.I. Khalilov, A.N. Nasibova, News Baku University2010, 3, 35-45.
[8] A.N. Nasibova, R.I. Khalilov, Int. J. Dev. Res., 2016, 6, 7071-7078.
[9] M. Samadishadlou, M. Farshbaf, N. Annabi, T. Kavetskyy, R. Khalilov, S. Saghfi, A. Akbarzadeh, S. Mousavi, Artif Cells Nanomed Biotechnol, 2018, 46, 1314-1330.
[10] A.N. Nasibova, B.V. Trubitsin, S.M. İsmayılova, İ.Y. Fridunbayov, U.M. Qasımov, R.I. Khalilov, Reports of ANAS, 2015, 71.
[11] W.S. Jeong, P.A. Lachance, J. Food Sci, 2001, 66, 278-281.
[12] F. Vallejo, J.G. Marín, F.A. Tomás-Barberán, Food Chemistry2012, 130, 485-492.
[13] A.H. Gilani, M.H. Mehmood, K.H. Janbaz, A.U. Khan, S.A. Saeed, J Ethnopharmacol, 2008, 119, 1-5.
[14] M.R. Jeong, H.Y. Kim, J.D. Cha, J Bacteriol Virol, 2009, 39, 97–102.
[15] R.I. Khalilov, A.N. Nasibova, V.A. Serezhenkov, M.A. Ramazanov, M.K. Kerimov, A.A. Garibov, A.F. Vanin. J. Biophysics, 2011, 56, 316-322.
[16] S.M. Aberoumandi, R. Khalilov, S. Davaran, A. Nasibova, E. Abbasi, S. Saghfi, A. Akbarzadeh, Advances in Biology and Earth Sciences, 2017, 2, 125-142.
[17] T.S. Kavetskyy, R.I. Khalilov, O.O. Voloshanska, L.M. Kropyvnytska, T.M. Beyba, V.A. Serezhenkov, A.N. Nasibova, A. Akbarzadeh, S.Ya. Voloshanska. Advanced Nanotechnologies for Detection and Defence against CBRN Agents, 2018, 487-492.
[18] R.I. Khalilov, A.N. Nasibova, The 22th International Conference. Mathematics. Computing Education, 2015, 55, 147.
[19] Yu.A. Koksharov, V.D. Dolzhenko, S.A. Agazade, Physics of the Solid State, 2010, 52, 1929-1934.
[20] Yu.A. Koksharov, Physics of the Solid State, 2015, I, 2011-2015.
[21] A.N. Tikhonov, R.V. Agafonov, I.A. Grigoryev, I.A. Kirilyuk, V.V. Ptushenko, B.V. Trubitsin, Biohimica et Biophisica Acta., 2008, 1777, 285-294.
[22] A.R. Muxworthy, E. McClelland, J.Int, 2000, 140, 101–114.
[23] Liu F, Laurent S, Fattahi H, Elst LV, Muller RN.. Nanomedicine, 2011, 6, 519-528.
[24]. N. Guskos, J. Typek, G. Zolnierkiewicz, Current Topics in Biophysics, 2010, 33, 77-80.
[25] A.H. Lu, E.L. Salabas, F. Schüth, Angewandte Chemie International Edition, 2007, 46, 1222–44.
[26] R.I. Khalilov, A.N. Nasibova, R.J. Gasimov, News of Baku University, 2011, 4, 55-61.
[27] Olga N. Sorokina, Alexander L. Kovarski, Marina A. Lagutina, Sergey A. Dubrovskii and Fridrikh S. Dzheparov, Appl. Sci., 2012, 342-350.
[28] Robert J. Usselman, M.T. Klem, M. Allen, Eric D. Walter, K. Gilmore, T. Douglas, M. Young, Y. Idzerda, D.J. Singel, Journal of Applied Physics, 2005, 97
[29] R.Y. Hong, B. Feng, L.L. Chen, G.H. Liu, H.Z. Li, Y. Zheng, D.G. Wei, Biochem Eng J., 2008, 42, 290–300.
[30] T. Kavetskyy, O. Zubrytska, L. Pankiv, R. Khalilov, A. Nasibova, A. Akbarzadeh, A. Pryima, N. Stebeletska, S. Voloshanska, NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB), 2020, 215-221.
[31] A.N. Nasibova, R.I. Khalilov, B.V. Trubitsin, A.A. Garibov, A.N. Tikhonov, Reports National Academy of Sciences of Azerbaijan, 2013, 19, 31-39.
[32] A. Nasibova, R. Khalilov, U. Qasumov, B. Trubitsin, A. Tikhonov, European J. Biotechnol. Biosci., 2016, 4, 43-47.