Document Type : Original Research Article


1 Moscow State University of Food Production, 125080 Moscow, Russia

2 Federal Research Center of Nutrition and Biotechnology, 109240, Moscow, Russia


Ensuring the microbiological safety of food products is a problem currently at issue. The use of antimicrobial packaging materials is a way of solving the problem. Accordingly, the aim of this work was to create packaging materials based on polyethylene (PE) and silver nanoparticles (Ag-NPs) using the ultrasonic treatment of the melt to obtain antimicrobial materials that provide an extended shelf life of packaged food products. Materials based on PE were obtained with Ag-NPs concentrations of 0.5%, 1.0%, 2.0% and 5.0% with and without ultrasonic treatment of melts. Standard methods for studying rheological, physicomechanical, antimicrobial properties and sanitary-chemical indicators of materials were used in the article. It was found that ultrasonic treatment increases the melt flow and contributes to the production of materials with the uniform distribution of additives. The Ag-NPs content from 1.0% and higher in the contents of the material provides antimicrobial properties. The prolongation of the shelf life of the food product, stored in a material based on PE and Ag-NPs 2.0%, was established. In the study of oxygen and water vapour permeability of polymer compositions based on PE and Ag-NPs, it was found that the introduction of a filler increased vapour permeability by about 8-10%, compared with the control samples. The development of polymer composite materials (PCM) with antimicrobial properties and degradability was carried out.

Graphical Abstract

Impact of ultrasonic treatment on physicochemical properties of polyethylene compositions containing silver nanoparticles


Main Subjects

[1]  I. Zorraquín-Peña, C. Cueva, B. Bartolomé, M. Moreno-Arribas, Microorganisms, 2020, 8, 132.
[2]  S.P. Deshmukh, S.M. Patil, S.B. Mulani, S.D. Delekar, Materials Science and Engineering, 2019, 97, 954-965.
[3]  M. Salas-Orozco, N. Niño-Martínez, G.A. Martínez-Castañón, F.T. Méndez, M.E.C Jasso, F. Ruiz, Journal of Nanomaterials, 2019, 2019.
[4]  T.V. Duncan, Journal of colloid and interface science, 2011, 363, 1-24.
[5]  S. Gokularaman, S.A. Cruz, M.M. Pragalyaashree, A. Nishadh, Journal of Pharmaceutical Sciences and Research, 2017, 9, 1743-1749.
[6]  N.A. Al-Tayyar, A.M. Youssef, R. Al-Hindi, Food Chemistry, 2020, 310, 125915.
[7]  M. Mostafidi, M.R. Sanjabi, F. Shirkhan, M.T. Zahedi, Trends in Food Science & Technology, 2020, 103, 321-332.
[8]  S.A. Sofi, J. Singh, S. Rafiq, U. Ashraf, B.N. Dar, G.A. Nayik, Current Nutrition & Food Science, 2018, 14, 305-312.
[9]  C.A. dos Santos, A.P. Ingle, M. Rai, Applied Microbiology and Biotechnology, 2020, 104, 2373-2383.
[10]  K. Kraśniewska, S. Galus, M. Gniewosz, International Journal of Molecular Sciences, 2020, 21, 698.
[11]  M.L. Ugalde, A.M. de Cezaro, F. Vedovatto, N. Paroul, J. Steffens, E. Valduga, R.L. Cansian, Journal of Food Science and Technology, 2017, 54, 2171-2175.
[12]  M. Carbone, D.T. Donia, G. Sabbatella, R. Antiochia, Journal of King Saud University-Science, 2016, 28, 273-279.
[13]  E.O. Simbine, L.D.C. Rodrigues, J. Lapa-Guimaraes, E.S. Kamimura, C.H. Corassin, C.A.F.D. Oliveira, Food Science and Technology, 2019, 39, 793-802. 
[14]  Y.V. Frolova, I.A. Kirsh, O.V. Beznaeva, D.A. Pomogova, A.A. Tikhomirov, Proc. Univ.  Appl. Chem. Biotechnol, 2017, 7, 145–152,
[15]  A. Bahrami, R. Delshadi, E. Assadpour, S.M. Jafari, L. Williams, Advances in Colloid and Interface Science, 2020, 102140.
[16]  M.D.H. Beg, S. Kormin, M. Bijarimi, H.U. Zaman, Advances in Polymer Technology, 2016, 35, 21521(1-9).
[17]  I.A. Kirsh, V.V. Ananiev, T.I Chalykh, D.A. Sogrina, D.A. Pomogova, Plast. Massy, 2014, 1112, 45-48. (in Russian)
[18]  E.O. Ogunsona, R. Muthuraj, E. Ojogbo, O. Valerio, T.H. Mekonnen, Applied Materials Today, 2020, 18, 100473.
[19]  S.A. Qamar, M. Asgher, M. Bilal, H.M. Iqbal, Food Research International, 2020, 109625.
[20]  I. Kirsh, Y. Frolova, O. Bannikova, O. Beznaeva, I. Tveritnikova, D. Myalenko, D. Zagrebina, Polymers, 2020, 12, 275.
[21]  M. Sabetzadeh, R. Bagheri, M. Masoomi, Journal of Applied Polymer Science, 2012, 126, E63-E69.
[22]  H. Hamadache, H. Djidjelli, A. Boukerrou, M. Kaci, J.R. José Antonio, J.M. Martín‐Martínez, Polymer Composites, 2019, 40, 3242-3253.
[23]  F. Inceoglu, Y.Z. Menceloglu, Journal of applied polymer science, 2013, 129, 1907-1914.
[24]  P. Kanmani, S.T. Lim, Process Biochemistry, 2013, 48, 1099-1106.
[25]  N. Durán, M. Durán, M.B. De Jesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12, 789-799.
[26]  European Food Safety Authority (EFSA). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018, 16, 5327.
[27]         A. Jimenez, J.N. Aneli, S. Kubica. CRC Press, 2013, 235–251.