Document Type : Original Research Article


Synthesis and Molecular Simulation Laboratory, Chemistry Department, Pars Isotope Company, P.O. BOX 1437663181, Tehran, Iran


The main purpose of the present research article is the docking analysis of active substances of annovera (segesterone acetate and ethinyl estradiol) with progesterone and estrogen receptors (PR and ER), respectively. The first step of this study is optimizing the title compounds using B3LYP/6-311++G(d,p) basis set of theory at room temperature in the isolated form of Gaussian 03 software. The frontier molecular orbital (FMO) theory is used to understand the reactivity and stability of the said compounds. The global reactivity indices indicate that both molecules have similar electrophilicity. After the quantum mechanical (QM) study, the docking analyses of the compounds embedded in the active sites of the receptors (PR and ER) are done using Molegro Virtual Docker (MVD) software. The docking studies show that the steric interactions play the main role in ligands complex formation with the receptors.

Graphical Abstract

In silico study of the active components (17α-ethinyl estradiol and segesterone acetate) of annovera as a novel vaginal contraceptive system by docking of their binding to estrogen and progesterone receptors


[1] M. Bucciero, M. Parda-Chlebowicz, Contraception: Overview. In Ambulatory Gynecology, Springer, New York, NY, 2018, (33-57).
[2] I. Alsharaydeh, M. Gallagher, T.A. Mahmood, Obstet. Gynaecol. Reprod. Med., 2017, 27,158-165.
[3]R.R.Peachman, JAMA., 2018, 319, 1083-1084.
[4] T. Sierra, JAAPA., 2019, 32, 23-27.
[5] D.R. Mishell, M.E. Lumkin, Fertil. Steril., 1970, 21, 99-103.
[6] K. Gemzell-Danielsson, R. Sitruk-Ware, M.D. Creinin, M. Thomas, K.T. Barnhart, G. Creasy, H. Sussman, M. Alami, A.E. Burke, E. Weisberg, I. Fraser, M.J. Miranda, M. Gilliam, J. Liu, B.R. Carr, M. Plagianos, K. Roberts, D. Blithe., Contraception.,2019, 7824, 30035-30036.
[7] I. Monteiro, C.F. Guazzelli, L. Bahamondes, Expert OpinPharmacother., 2018, 19, 1685-1691.
[8] V. Brache, L.J. Payán, A. Faundes A, Contraception., 2013, 87, 264-272.
[9] R. Voelker, JAMA., 2018, 320, 1098.
[10] N. Kumar, J. Fagart, P. Liere, S.J. Mitchell, A.R. Knibb, I. Petit-Topin, M. Rame, M. El-Etr, M. Schumacher, J.J. Lambert, M.E. Rafestin-Oblin, R. Sitruk-Ware, Endocrinology., 2017, 158, 170-182.
[11] D. Blithe, K. Gemzell, R. Sitruk-Ware, R. Merkatz, G. Creas, Contraception., 2018, 98, 336.
[12] K.K. Blakely, NursWomens Health. 2019, 23,172-176.
[13] J.T. Jensen, A.B. Edelman, B.A. Chen, D.F. Archer, K.T. Barnhart, M.A. Thomas, A.E. Burke, C.L. Westhoff,  L.S. Wan, R. Sitruk-Ware, N. Kumar, B. Variano, D.L. Blithe, Contraception., 2018, 97, 422-427.
[14] M. Fekri, A. Omrani, S. Jameh Bozorgi, M. Razavi Mehr, Adv. J. Chem. A, 2019, 2, 14-20.
[15] Z. Javanshir, S. Jameh-Bozorgi, P. Peyki, Adv. J. Chem. A, 2018, 1, 117-126.
[16] M. Nabati, Iran. Chem. Commun., 2019, 7, 324-334.
[17] M. Nabati, H. Sabahnoo, E. Lohrasbi, M. Mazidi, Chem. Methodol., 2019, 3, 383-397.
 [18] M. Nabati, M. Kermanian, H. Mohammadnejad-Mehrabani, H.R. Kafshboran, M. Mehmannavaz, S. Sarshar, Chem. Methodol., 2018, 2, 128-140.
[19] M. Nabati, M. Mahkam, Org. Chem. Res., 2016, 2, 70-80.
[20] M. Nabati, J. Phys. Theor. Chem. IAU Iran, 2017, 14, 283-293.
[21] M. Nabati, Chem. Methodol., 2017, 1, 121-135.
[22] M. Nabati, J. Phys. Theor. Chem. IAU Iran, 2017, 14, 49-61.
[23] M. Nabati, H. Sabahnoo, J. Med. Chem. Sci., 2019, 2, 118-125.
[24] M. Nabati, Asian J. Green Chem., 2019, 3, 258-270.
[25] M. Nabati, Chem. Method., 2018, 2, 223-238.
[26] M. Nabati, Iran. J. Org. Chem., 2018, 10, 2457-2465.
[27] F. Yang, C. Wu, Z. Li, G. Tian, J. Wu, F. Zhu, J. Zhang, Y. He, J. Shen, Org. Process Res. Dev., 2016, 20, 1576-1580.