Document Type : Review Article

Authors

1 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, West Sumatra, Indonesia

2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, West Sumatra, Indonesia

3 Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, East Java, Indonesia

Abstract

This review study offers a thorough investigation of the developments in the field of multi-walled carbon nanotubes (MWCNTs) deposition on Si/SiO2 substrates using plasma-enhanced chemical vapor deposition (PECVD). Using iron catalytic nanoparticles produced by the breakdown of Fe(CO)5, the study examines the growth mechanism of MWCNTs. According to prior literature descriptions, iron oxide nanoparticles are deposited using a microwave plasma torch with a dual-flow nozzle electrode. The Si/SiO2 substrate is set up in a sample holder that can store several samples, each of which has a deposition area of 4 mm by 4 mm. Argon acts as the carrier gas and flows at preset rates via the inner and outer channels. At 210 W of plasma power, the deposition process lasts for 15 seconds. The resulting MWCNTs' structural characteristics, such as density, alignment, and uniformity, are examined. This comprehensive review highlights the intricate interplay of process parameters and their influence on MWCNT growth. The insights provided contribute to a better understanding of PECVD-based MWCNT synthesis and pave the way for optimizing these processes for various applications, including electronic and energy devices.

Graphical Abstract

Advancements in plasma-enhanced chemical vapor deposition of a multi-walled carbon nanotubes on Si/SiO2 substrates: A comprehensive review

Keywords

Main Subjects

[1] R. Baez-Gaxiola, J.A. García-Valenzuela, Optimized protocol for the preparation of multi-walled carbon nanotube: polystyrene transducers for electrochemical sensing, Instrum. Sci. Technol., 2021, 49, 327-341. [Crossref], [Google Scholar], [Publisher]
[2] G. Bannov, A.M. Manakhov, D.V. Shtansky. Plasma Functionalization of Multi-Walled Carbon Nanotubes for Ammonia Gas Sensors, Materials, 2022, 15, 7262. [Crossref], [Google Scholar], [Publisher]
[3] M. Remillard, Q. Zhang, S. Sosina, Z. Branson, T. Dasgupta, C.D. Vecitis, Electric-field alignment of aqueous multi-walled carbon nanotubes on microporous substrates, Carbon, 2016, 100, 578-589. [Crossref], [Google Scholar], [Publisher]
[4] Shoukat, M.I. Khan, Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology, Micro. Technol., 2021, 1-10. [Crossref], [Google Scholar], [Publisher]
[5] Chockalingam, A. Bisht, O.S. Panwar, A.K. Kesarwani, B.P. Singh, J. Chand, V.N. Singh, Synthesis, structural and field emission properties of multiwall carbon nanotube-graphene-like nanocarbon hybrid films grown by microwave plasma enhanced chemical vapor deposition, Mater. Chem. Phys., 2015, 156, 38-46. [Crossref], [Google Scholar], [Publisher]
[6] Bisht, S. Chockalingam, O.S. Panwar, A.K. Kesarwani, B.P. Singh, V.N. Singh, Structural, field emission and ammonia gas sensing properties of multiwalled carbon nanotube-graphene like hybrid films deposited by microwave plasma enhanced chemical vapor deposition technique, Sci. Adv. Mater., 2015, 7, 1424-1434. [Crossref], [Google Scholar], [Publisher]
[7] Pandey, M. Dahiya, Carbon nanotubes: Types, methods of preparation and applications, Carbon, 2016, 1, 15-21. [Google Scholar], [PDF]
[8] H. Du, X. Maimaitiyiming, Y. Luo, A. Obold. A highly sensitive ammonia gas sensor based on non-covalent functionalized single-walled carbon nanotubes with Schiff Base polyphenylene polymer, Sens. Actuators B Chem., 2023, 394, 134426. [Crossref], [Google Scholar], [Publisher]
[9] A. Khamsavi, Y. Abdi, M.Z. Meymian, A novel two-electrode nonenzymatic electrochemical glucose sensor based on vertically aligned carbon nanotube arrays, IEEE Sens. J., 2019, 3, 1-4. [Crossref], [Google Scholar], [Publisher]
[10] A.G. Bannov, O. Jašek, A. Manakhov, M. Márik, D. Nečas, L. Zajíčková, High-performance ammonia gas sensors based on plasma treated carbon nanostructures, IEEE Sens. J., 2017, 17, 1964-1970. [Crossref], [Google Scholar], [Publisher]
[11] S. Kumar, V. Pavelyev, P. Mishra, N. Tripathi, A review on сhemiresistive gas sensors based on carbon nanotubes: device and technology transformation, Sens. Actuator. A. Phys., 2018, 283, 174-186. [Crossref], [Google Scholar], [Publisher]
[12] R. Aslam, C.M. Hussain, J. Aslam, Surface modified carbon nanotubes for lab on chip devices, in surface modified carbon nanotubes volume 1: fundamentals, synthesis and recent trends, J. Am. Chem. Soc.. 2022, 181-193. [Crossref], [Google Scholar], [Publisher]
[13] Z. Shao, Y. Chang, B.J. Venton. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal. Chim. Acta, 2022, 1223, 340165. [Crossref], [Google Scholar], [Publisher]
[14] A. Oyewemi, A.S. Abdulkareem, J.O. Tijani, M.T. Bankole, O.K. Abubakre, A.S. Afolabi, W. D. Roos. Controlled syntheses of multi-walled carbon nanotubes from bimetallic Fe–Co catalyst supported on kaolin by chemical vapour deposition method. Arab J Sci Eng, 2019, 44, 5411-5432. [Crossref], [Google Scholar], [Publisher]
[15] R. Chen, Y. Xue, X. Xu, H. Yang, T. Qiu, L. Shui, X. Wang, G. Zhou, M. Giersig, S. Pidot, J. A. Hutchison, E.M. Akinoglu. Lithography-free synthesis of periodic, vertically-aligned, multi-walled carbon nanotube arrays. Nanotechnology, 2021, 33, 065304. [Crossref], [Google Scholar], [Publisher]
[16] M.R. Baez-Gaxiola, J.A. García-Valenzuela. Optimized protocol for the preparation of multi-walled carbon nanotube: polystyrene transducers for electrochemical sensing. Instrum. Sci. Technol., 2021, 49, 327-341. [Crossref], [Google Scholar], [Publisher]
[17] E.M. Remillard, Q. Zhang, S. Sosina, Z. Branson, T. Dasgupta, C.D. Vecitis. Electric-field alignment of aqueous multi-walled carbon nanotubes on microporous substrates. Carbon, 2016, 100, 578-589. [Crossref], [Google Scholar], [Publisher]
[18]R. Hufschmid, H. Arami, R.M. Ferguson, M. Gonzales, E. Teeman, L.N. Brush, N. D. Browning, K.M. Krishnan. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale, 2015, 7, 11142-11154. [Crossref], [Google Scholar], [Publisher]
[19] A. Lassenberger, T.A. Grunewald, P.D.J. Van Oostrum, H. Rennhofer, H. Amenitsch, R. Zirbs, H. C. Lichtenegger, E. Reimhult. Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem. Mater., 2017, 29, 4511-4522. [Crossref], [Google Scholar], [Publisher]
[20] M. Kubo, K. Kusdianto, H. Masuda, M. Shimada. Fabrication of a metal oxide layer on a multi-walled carbon nanotube surface by in-flight coating using gas-phase deposition. Ceram. Int., 2016, 42, 9162-9169. [Crossref], [Google Scholar], [Publisher]
[21] F. Ahmed, S. Kumar, N.M. Shaalan, O. Saber, S. Rehman, A. Aljaafari, H. Abuhimd, M. Alshahrani. Synergistic Effect of Hexagonal Boron Nitride-Coated Separators and Multi-Walled Carbon Nanotube Anodes for Thermally Stable Lithium-Ion Batteries. Crystals, 2022, 12, 125. [Crossref], [Google Scholar], [Publisher]
[22] L.T.M. Hoa. Characterization of multi-walled carbon nanotubes functionalized by a mixture of HNO3/H2SO4. Diam. Relat. Mater, 2018, 89, 43-51. [Crossref], [Google Scholar], [Pdf]
[23] M. Goyal, N. Goyal, H. Kaur, A. Gera, K. Minocha, P. Jindal. Fabrication and characterisation of low density polyethylene (LDPE)/multi walled carbon nanotubes (MWCNTs) nano-composites. Perspect. Sci., 2016, 8, 403-405. [Crossref], [Google Scholar], [Publisher]
[24] H.M. Park, G.M. Kim, S.Y. Lee, H. Jeon, S. Y. Kim, M. Kim, Y.C. Jung, B.J. Yang. Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites. Constr. Build. Mater., 2018, 165, 484-493. [Crossref], [Google Scholar], [Publisher]
[25] J. Yang, X. Li, C. Liu, G. Ma. Changes of structure and electrical conductivity of multi-walled carbon nanotubes film caused by 3 MeV proton irradiation. Appl. Surf. Sci., 2015, 325, 235-241. [Crossref], [Google Scholar], [Publisher]
[26] H. Ezgin, E. Demir, S. Acar, M. Özer. Investigation of temperature-dependent electrical parameters in a Schottky barrier diode with multi-walled carbon nanotube (MWCNT) interface. Mater. Sci. Semicond. Process., 2022, 147, 106672. [Crossref], [Google Scholar], [Publisher]
[27 G.V. Prasad, V. Vinothkumar, S.J. Jang, T. H. Kim. Multi-walled carbon nanotube/graphene oxide/poly (threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples. Microchem. J., 2023, 184, 108205. [Crossref], [Google Scholar], [Publisher]
[28] D. Balram, K.Y. Lian, N. Sebastian. Synthesis of a functionalized multi-walled carbon nanotube decorated ruskin michelle-like ZnO nanocomposite and its application in the development of a highly sensitive hydroquinone sensor. Inorg. Chem. Front., 2018, 5, 1950-1961. [Crossref], [Google Scholar], [Publisher]
[29] S. Yashiro, Y. Sakaida, Y. Shimamura, Y. Inoue. Evaluation of interfacial shear stress between multi-walled carbon nanotubes and epoxy based on strain distribution measurement using Raman spectroscopy. Compos. Part A: Appl. Sci. Manuf., 2016, 85, 192-198. [Crossref], [Google Scholar], [Publisher]
[30] G.H. Wu, S.Q. Liu, X.Y. Wu, X.M. Ding. Influence of MWCNTs modified by silane coupling agent KH570 on the properties and structure of MWCNTs/PLA composite film. J. Polym. Res., 2016, 23, 1-8. [Crossref], [Google Scholar], [Publisher]
[31]Y. Fan, G. Wu, F. Su, K. Li, L. Xu, X. Han, Y. Yan. Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel, 2016, 178, 172-178. [Crossref], [Google Scholar], [Publisher]
[32] P.A. de León-Martínez, A. Sáenz-Galindo, C. A. Ávila-Orta, A.O. Castañeda-Facio, M.L. Andrade-Guel, U. Sierra, G. Alvarado-Tenorio, J. Bernal-Martínez. Ultrasound-Assisted Surface Modification of MWCNT Using Organic Acids. Materials, 2020, 14, 72. [Crossref], [Google Scholar], [Publisher]
[33] T. Alizadeh, S. Nayeri. An enzyme-free sensing platform based on molecularly imprinted polymer/MWCNT composite for sub-micromolar-level determination of pyruvic acid as a cancer biomarker. Anal. Bioanal. Chem., 2020, 412, 657-667. [Crossref], [Google Scholar], [Publisher]
[34] D.V. Wagle, C.A. Deakyne, G.A. Baker. Quantum chemical insight into the interactions and thermodynamics present in choline chloride based deep eutectic solvents. J. Phys. Chem. B, 2016, 120, 6739-6746. [Crossref], [Google Scholar], [Publisher]
[35] C. Velez, O. Acevedo. Simulation of deep eutectic solvents: Progress to promises. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12, e1598. [Crossref], [Google Scholar], [Publisher]
[36] D.K. Mishra, G. Gopakumar, G. Pugazhenthi, C.V. Siva Brahmmananda Rao, S. Nagarajan, T. Banerjee. Molecular and spectroscopic insights into a metal salt-based deep eutectic solvent: a combined quantum theory of atoms in molecules, noncovalent interaction, and density functional theory study. J. Phys. Chem. A., 2021, 125, 9680-9690. [Crossref], [Google Scholar], [Publisher]
[37] A. González de Castilla, J.P. Bittner, S. Müller, S. Jakobtorweihen, I. Smirnova. Thermodynamic and transport properties modeling of deep eutectic solvents: A review on gE-models, equations of state, and molecular dynamics. J. Chem. Eng. Data, 2019, 65, 943-967. [Crossref], [Google Scholar], [Publisher]
[38] B. B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L. Adhikari, T. Zelovich, B. W. Doherty, B. Gurkan, E. J. Maginn, A. Ragauskas, M. Dadmun, T. A. Zawodzinski, G. A. Baker, M. E. Tuckerman, R. F. Savinell, J. R. Sangoro. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev., 2020, 121, 1232-1285. [Crossref], [Google Scholar], [Publisher]
[39] C. Ma, A. Laaksonen, C. Liu, X. Lu, X. Ji. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem. Soc.Rev., 2018, 47, 8685-8720. [Crossref], [Google Scholar], [Publisher]
[40] M. BinSabt, M. Shaban, A. Gamal. Nanocomposite Electrode of Titanium Dioxide Nanoribbons and Multiwalled Carbon Nanotubes for Energy Storage. Materials, 2023, 16, 595. [Crossref], [Google Scholar], [Publisher]
[41] M. Shaban, A.M. Ashraf, H. AbdAllah, H. M. Abd El-Salam. Titanium dioxide nanoribbons/multi-walled carbon nanotube nanocomposite blended polyethersulfone membrane for brackish water desalination. Desalination, 2018, 444, 129-141. [Crossref], [Google Scholar], [Publisher]
[42] S. Ebrahimi, D. Souri, A. Khezripour. Strain-size features of bare ZnSe: Cu and ZnSe: Cu@ ZnS core/shell quantum dots from extensive X-ray diffraction analysis, and their photoluminescence properties. J. Lumin., 2022, 244, 118757. [Crossref], [Google Scholar], [Publisher]
[43] S.K. Sen, U.C. Barman, M.S. Manir, P. Mondal, S. Dutta, M. Paul, M A M Chowdhury, M.A. Hakim. X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. ANSN, 2020, 11, 025004. [Crossref], [Google Scholar], [Publisher]
[44] Y. Cornaton, J.P. Djukic. Noncovalent interactions in organometallic chemistry: from cohesion to reactivity, a new chapter. Acc. Chem. Res., 2021, 54, 3828-3840. [Crossref], [Google Scholar], [Publisher]
[45] A.M. MAhArrAMov, K.T. MAhMudov. Non-covalent Interactions in the Synthesis and Design of New Compounds. 2016 [Crossref], [Google Scholar], [Publisher]
[46] P. Hobza, J. Rezac. Introduction: noncovalent interactions. Chem. Rev., 2016, 116, 4911-4912. [Crossref], [Google Scholar], [Publisher]
[47] L.C. Williams, S.M. Underwood, M.W. Klymkowsky, M.M. Cooper. Are noncovalent interactions an Achilles heel in chemistry education? A comparison of instructional approaches. J. Chem. Edu., 2015, 92, 1979-1987. [Crossref], [Google Scholar], [Publisher]
[48] K.T. Mahmudov, A.V. Gurbanov, F.I. Guseinov, M.F.C.G. da Silva. Noncovalent interactions in metal complex catalysis. Coord. Chem. Rev., 2019, 387, 32-46. [Crossref], [Google Scholar], [Publisher]
[49] F.D. Toste, M.S. Sigman, S.J. Miller. Pursuit of noncovalent interactions for strategic site-selective catalysis. Acc. Chem. Res., 2017, 50, 609-615. [Crossref], [Google Scholar], [Publisher]
[50] Y. Cornaton, J.P. Djukic. Noncovalent interactions in organometallic chemistry: from cohesion to reactivity, a new chapter. Acc. Chem. Res., 2021, 54, 3828-3840. [Crossref], [Google Scholar], [Publisher]
[51] J.C. Lewis. Beyond the second coordination sphere: engineering dirhodium artificial metalloenzymes to enable protein control of transition metal catalysis. Acc. Chem. Res., 2019, 52, 576-584. [Crossref], [Google Scholar], [Publisher]
[52] S. Afewerki, U. Edlund. Combined Catalysis: A Powerful Strategy for Engineering Multifunctional Sustainable Lignin-Based Materials. ACS nano, 2023, 17, 7093-7108. [Crossref], [Google Scholar], [Publisher]
[53] B.S. Bouley, F. Tang, D.Y. Bae, L.M. Mirica. C–H bond activation via concerted metalation–deprotonation at a palladium (iii) center. Chem. Sci., 2023, 14, 3800-3808. [Crossref], [Google Scholar], [Publisher]
[54] Y. Cornaton, J.P. Djukic. Noncovalent interactions in organometallic chemistry: from cohesion to reactivity, a new chapter. Acc. Chem. Res., 2021, 54, 3828-3840. [Crossref], [Google Scholar], [Publisher]
[55] D.Y. Yoo, I. You, S.J. Lee. Electrical and piezoresistive sensing capacities of cement paste with multi-walled carbon nanotubes. Archiv. Civ. Mech. Eng., 2018, 18, 371-384. [Crossref], [Google Scholar], [Publisher]
[56] B. Şimşek, T. Uygunoğlu, Ö. F. Dilmaç. Comparative evaluation of the effectiveness of PTFE nanoparticles on cement pastes properties with multi-wall carbon nanotubes, graphene oxide and silver nanoparticles. Constr. Build. Mater., 2022, 319, 126077. [Crossref], [Google Scholar], [Publisher]
[57] M. Karakouzian, V. Farhangi, M.R. Farani, A. Joshaghani, M. Zadehmohamad, M. Ahmadzadeh. Mechanical characteristics of cement paste in the presence of carbon nanotubes and silica oxide nanoparticles: An experimental study. Materials, 2021, 14, 1347. [Crossref], [Google Scholar], [Publisher]
[58] S. Żarska, D. Kulawik, J. Drabowicz, W. Ciesielski. A review of procedures of purification and chemical modification of carbon nanotubes with bromine. Fuller., Nanotub. Carbon Nanostructures, 2017, 25, 563-569. [Crossref], [Google Scholar], [Publisher]
[59] S. Zdanowska, M. Pyzalska, J. Drabowicz, D. Kulawik, V. Pavlyuk, T. Girek, W. Ciesielski. Carbon nanotubes functionalized by salts containing stereogenic heteroatoms as electrodes in their battery cells. Pol. J. Chem. Technol., 2016, 18, 22-26. [Crossref], [Google Scholar], [Publisher]
[60] J. Drabowicz, D. Krasowska, W. Ciesielski, D. Kulawik, M. Pyzalska, S. Zdanowska, P. Pokora-Sobczak, J. Chrzanowski‎, T. Makowski. Carbon nanotubes functionalized with sulfur, selenium, or phosphorus or substituents containing these elements. Phosphorus, Sulfur, Silicon Relat Elem., 2016, 191, 541-547. [Crossref], [Google Scholar], [Publisher]
[61] I. Abdulazeez, B. Salhi, A.M. Elsharif, M. S. Ahmad, N. Baig, M.M. Abdelnaby. Hemin-Modified Multi-Walled Carbon Nanotube-Incorporated PVDF Membranes: Computational and Experimental Studies on Oil–Water Emulsion Separations. Molecules, 2023, 28, 391. [Crossref], [Google Scholar], [Publisher]
[62] C.L. Brito, E.I. Ferreira, M.A. La-Scalea. Application of multi-walled carbon nanotubes functionalized with hemin to evaluate the electrochemical behavior of nitrofurazone in aqueous media. Electrochim. Acta., 2023, 459, 142486. [Crossref], [Google Scholar], [Publisher]
[63] R. Parmar, J. Rezvani, M. Amati, L. Gregoratti, D.B.D.F. Neto, J.M. Rosolen, R. Gunnella. Effect of Carbon Nanotubes on the Na+ Intercalation Capacity of Binder Free Mn2V2O7-CNTs Electrode: A Structural Investigation. Materials, 2023, 16, 2069. [Crossref], [Google Scholar], [Publisher]
[64] D. B. D Freitas Neto. Eletrodos binder-free para baterias e supercapacitores de lítio baseados em nanocompósitos de carbono e óxidos metálicos: uma avaliação de viabilidade técnica (Doctoral dissertation, Universidade de São Paulo). 2023. [Crossref], [Google Scholar], [Publisher]
[65] A.J. Fernández-Ropero, D. Saurel, B. Acebedo, T. Rojo, M. Casas-Cabanas. Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J. Power Sources, 2015, 291, 40-45. [Crossref], [Google Scholar], [Publisher]
[66] H. Fawzy, M.S. Ghareeb, H. Mosaad, Implication of plasma miR 122 and miR 151-3p levels in diagnosis and prognosis of acute coronary syndrome patients, J. Med. Chem. Sci., 2023, In Press. [Crossref], [Pdf], [Publisher]
[67] P. Pandey, M. Dahiya. Carbon nanotubes: Types, methods of preparation and applications, Carbon, 2016, 1, 15-21. [Google Scholar], [Pdf]
[68] F. Ahmadzade, S. Safa, P. Balashabady. Growth of vertically aligned carbon nanotubes by DCPECVD system and the effects of C2H2 concentration and plasma current on the growth behavior of CNTs. Arab. J. Sci. Eng., 2011, 36, 97-103. [Crossref], [Google Scholar], [Publisher]
[69] I.J. Teng, K.L. Chen, H.L. Hsu, S.R. Jian, L. C. Wang, J. H. Chen, C.T. Kuo. Highly graphitized laterally interconnected SWCNT network synthesis via a sandwich-grown method. J. Phys. D: Appl. Phys., 2011, 44, 145401. [Crossref], [Google Scholar], [Publisher]
[70] S.A. Etghani, E. Ansari, S. Mohajerzadeh. Evolution of large area TiS2-TiO2 heterostructures and S-doped TiO2 nano-sheets on titanium foils. Sci. Rep., 2019, 9, 17943. [Crossref], [Google Scholar], [Publisher]