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Introduction 

Due to its potential uses in numerous domains, 

the deposition of multi-walled carbon 

nanotubes (MWCNTs) onto Si/SiO2 substrates 

using plasma-enhanced chemical vapor 

deposition (PECVD) has attracted a lot of 

attention. MWCNTs possess exceptional 

mechanical, electrical, and thermal properties 

that make them promising candidates for 

advanced electronic devices, sensors, and 

energy storage systems [1-3].  

The PECVD technique offers precise control 

over the growth process and structural 

characteristics of MWCNTs, which is essential 

for tailoring their properties to specific 

applications. However, despite considerable 

progress, there remains a need to further 

understand the intricate interplay between 

process parameters, substrate properties, and 
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This review study offers a thorough investigation of the 
developments in the field of multi-walled carbon nanotubes 
(MWCNTs) deposition on Si/SiO2 substrates using plasma-
enhanced chemical vapor deposition (PECVD). Using iron 
catalytic nanoparticles produced by the breakdown of Fe(CO)5, 
the study examines the growth mechanism of MWCNTs. 
According to prior literature descriptions, iron oxide 
nanoparticles are deposited using a microwave plasma torch 
with a dual-flow nozzle electrode. The Si/SiO2 substrate is set up 
in a sample holder that can store several samples, each of which 
has a deposition area of 4 mm by 4 mm. Argon acts as the carrier 
gas and flows at preset rates via the inner and outer channels. At 
210 W of plasma power, the deposition process lasts for 15 
seconds. The resulting MWCNTs' structural characteristics, such 
as density, alignment, and uniformity, are examined. This 
comprehensive review highlights the intricate interplay of 
process parameters and their influence on MWCNT growth. The 
insights provided contribute to a better understanding of PECVD-
based MWCNT synthesis and pave the way for optimizing these 
processes for various applications, including electronic and 
energy devices. 

 

KEYWORDS 

Plasma-enhanced chemical vapor deposition; multi-walled 
carbon nanotubes; Si/SiO2 substrate; nanoparticle catalysis; 
growth mechanism. 

https://www.orcid.org/0000-0002-3740-3597
https://www.orcid.org/0000-0003-2718-6880
https://www.orcid.org/0000-0001-9984-0007


P a g e  | 1014  R. Zainul et al. 
 

 

 

catalyst materials to achieve uniform and 

well-aligned MWCNTs with optimal 

properties. This review aims to bridge the gap 

in the existing knowledge by comprehensively 

analyzing the recent advancements in PECVD-

based MWCNT deposition on Si/SiO2 

substrates, focusing on the growth 

mechanisms, catalyst nanoparticle formation, 

and the influence of deposition conditions on 

the resulting MWCNT structures [4-6]. 

Recent advancements in the field of multi-

walled carbon nanotube (MWCNT) deposition 

on Si/SiO2 substrates using plasma-enhanced 

chemical vapor deposition (PECVD) have 

underlined the importance of exact control 

over growth parameters and substrate 

interactions.. Advanced techniques for 

catalyst nanoparticle formation, such as the 

use of iron oxide nanoparticles derived from 

Fe(CO)5 decomposition, have demonstrated 

improved control over MWCNT growth. 

Moreover, strategies to enhance uniformity 

and alignment of MWCNTs through improved 

carrier gas flow control, substrate 

preparation, and optimized plasma power 

have been explored [7-8].  

The characterization of resulting MWCNT 

structures, including density, alignment, and 

uniformity, has been a focal point of recent 

research, leading to valuable insights into 

tailoring MWCNT properties for specific 

applications. The integration of MWCNTs into 

electronic devices, sensors, and energy 

storage systems remains a driving force, 

emphasizing the need for continued 

advancements in PECVD techniques to meet 

the demands of emerging technologies. This 

state-of-the-art understanding underscores 

the importance of exploring novel catalyst 

materials, optimizing deposition conditions, 

and gaining insights into the growth 

mechanisms of MWCNTs on Si/SiO2 substrates 

[9-11]. 

The originality of this study is found in its 

thorough investigation of plasma-enhanced 

chemical vapor deposition (PECVD) methods 

for the precise deposition of multi-walled 

carbon nanotubes (MWCNTs) on Si/SiO2 

substrates. By focusing on the intricate 

interplay between process parameters, 

substrate properties, and catalyst materials, 

this study contributes to an improved 

understanding of the growth mechanisms and 

structural characteristics of MWCNTs. [12-13]  

Additionally, the utilization of iron oxide 

nanoparticles as catalysts, derived from 

Fe(CO)5 decomposition, offers a novel 

approach to enhance MWCNT growth control. 

The optimization of carrier gas flow rates, 

substrate preparation, and plasma power 

allows for the production of uniform and 

aligned MWCNT structures, which are crucial 

for various applications. The ultimate goal of 

this research is to advance the knowledge and 

techniques related to PECVD-based MWCNT 

deposition, facilitating their integration into 

electronic devices, sensors, and energy 

storage systems with tailored properties and 

enhanced performance [14-15]. 

Martials and methods  

Materials  

Several important diagnostic devices were 

utilized to analyze and comprehend the 

characteristics of multi-walled carbon 

nanotubes deposited. Examples of device 

types include high-resolution SEM, such as the 

Hitachi S-4800 SEM model, enabling detailed 

surface imaging and nanotube morphology 

examination. Furthermore, XRD with the 

Rigaku SmartLab XRD model was employed 

for crystallographic analysis and 

understanding the crystal structure of 

nanotubes. Meanwhile, Raman spectroscopy 

with the Horiba LabRAM HR Evolution Raman 

Spectrometer allowed for in-depth molecular 

vibration analysis. Lastly, FT-IR with the 

Thermo Scientific Nicolet iS50 FT-IR 

Spectrometer was used for infrared analysis, 

aiding in the characterization of chemical 

composition and molecular bonds on the 

carbon nanotube's surface. All of these devices 
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represent cutting-edge technology that 

provides profound insights into the 

advancements in Plasma-Enhanced Chemical 

Vapor Deposition and the properties of 

nanomaterials deposited on Si/SiO2 

substrates.  

Preparation of substrates and nanoparticle 

deposition 

Si/SiO2 substrates were meticulously 

prepared to ensure cleanliness and 

uniformity. The substrates were then placed 

within a specialized holder designed to 

accommodate up to four samples 

simultaneously. A microwave plasma torch 

with a dual-flow nozzle electrode was used to 

deposit iron oxide nanoparticles onto the 

substrates, which are necessary for starting 

the formation of multi-walled carbon 

nanotubes (MWCNTs). [16-17]. This 

methodology allowed for controlled 

nanoparticle formation through the 

decomposition of Fe(CO)5. The choice of argon 

gas as the carrier gas was based on its inert 

nature, preventing undesirable reactions 

during nanoparticle deposition. Flow rates of 

700 and 28 sccm were respectively 

maintained through the central and outer 

channels, with the outer channel facilitating 

the introduction of Fe(CO)5 vapors [18-19].  

Standart and procedur 

Deposition of Multi-Walled Carbon Nanotubes 

(MWCNT) Using Plasma-Enhanced Chemical 

Vapor Deposition. MWCNTs were deposited 

on Si/SiO2 substrates using the plasma-

enhanced chemical vapor deposition method. 

To avoid contamination, the prepared 

substrates were loaded into a chamber with a 

controlled atmosphere. Ethyl carbonate and 

propylene carbonate (EC:PC, 9:1, v/v) were 

added to the process as the electrolyte, along 

with 1.0 mol L1 NaPF6. The mixture was 

introduced into the chamber and underwent 

the process under controlled conditions. The 

plasma power, deposition time, and gas flow 

rates were maintained at 210 W, 15 seconds, 

700 sccm for the central channel, and 28 sccm 

for the outer channel, respectively. This 

established protocol enabled the controlled 

growth of MWCNTs on the iron oxide 

nanoparticles [20-21]. 

To assess the density, alignment, and 

homogeneity of the synthesized MWCNTs, 

extensive structural characterisation was 

performed on them. The morphological 

properties of the produced MWCNTs were 

observed using scanning electron microscopy 

(SEM), allowing evaluation of their alignment 

and distribution. The MWCNTs' vibrational 

characteristics were examined using Raman 

spectroscopy to gain knowledge of their 

structural integrity and caliber. The results 

obtained from these characterization 

techniques were interpreted to understand 

the effects of varying deposition parameters 

on the final MWCNT structures [22-23]. 

Results and discussion 

Controlled Growth of MWCNTs. The 

research's primary focus on the controlled 

deposition of multi-walled carbon nanotubes 

(MWCNTs) on Si/SiO2 substrates through 

plasma-enhanced chemical vapor deposition 

(PECVD) highlights its significance for tailored 

nanomaterial synthesis. The utilization of iron 

oxide nanoparticles as catalysts, derived from 

Fe(CO)5 decomposition, presents a novel 

approach to enhance MWCNT growth control. 

The optimized carrier gas flow rates, substrate 

preparation, and plasma power contribute to 

the production of uniform and aligned 

MWCNT structures, which are pivotal for 

numerous applications in electronics and 

energy storage systems. 

Structural characterization insights 

The integration of scanning electron 

microscopy (SEM) and Raman spectroscopy 

for structural characterization provided 
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comprehensive insights into the synthesized 

MWCNTs. SEM images allowed the assessment 

of the MWCNT alignment, density, and 

distribution, enhancing the understanding of 

their morphology. Additionally, Raman 

spectroscopy data enabled the analysis of 

vibrational spectra, revealing details about the 

crystalline structure, quality, and potential 

defects in the grown MWCNTs. These analyses 

facilitated the establishment of correlations 

between deposition parameters and 

structural attributes, enabling the 

identification of optimal conditions for 

controlled MWCNT growth [24-26]. 

The findings of this research hold 

significant implications for various 

nanomaterial applications. Controlled 

MWCNT growth techniques are essential for 

tailoring the properties of nanomaterials to 

meet specific requirements in electronic 

devices, sensors, and energy storage systems. 

The exploration of advanced catalys materials 

and optimized deposition conditions opens 

avenues for enhancing the performance of 

these applications. Moreover, the 

comprehensive analysis of the relationships 

between deposition parameters and MWCNT 

structural attributes contributes to a better 

understanding of plasma-enhanced chemical 

vapor deposition processes, facilitating their 

utilization in various emerging technologies 

[27-29]. 

 

 

FIGURE 1 MWCNTs and M-MWCNTs' FTIR spectrum 

The structural examination of MWCNTs 

and M-MWCNTs was affirmed through FT-IR 

analysis, with subsequent oxidation and 

acidification modifications applied to M-

MWCNTs. Figure 1 depicts the FTIR spectra, 

revealing the presence of functional groups on 

both the interior and exterior surfaces of 

MWCNTs and M-MWCNTs. These functional 

groups include OH groups (3200–3600 cm–1), 

C=O groups (1600 cm–1), and C–C groups 

(1150 cm–1). In comparison to the original 

MWCNTs, M-MWCNTs exhibited increased 

transmittance (%) for the OH and C=O groups 

due to the modification process, which 

augmented the number of active sites and 

consequently altered the surface polarity and 

charge distribution. It is worth noting that the 

stretching vibration absorption peak of C=O 
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typically falls within the range of 1755–1670 

cm–1. In this study, a C=O absorption peak was 

observed at 1623 cm–1. This shift to a shorter 

wavelength region is attributed to the 

conjugate effect of carbon nanotubes, a 

phenomenon observed in prior research as 

well [30,31]. 

 

FIGURE 2 Multiple-wall carbon nanotube (MWCNT) modification using ultrasound and oxalic 

and citric acids    

Test tubes containing 200 mg of MWCNTs 

were mixed with saturated aqueous solutions 

of organic acids, namely citric acid and oxalic 

acid, as shown in Figure 2.  It's important to 

note that each acid exhibits different solubility 

characteristics, and the solutions used in this 

study were intentionally prepared to be 

saturated. Consequently, the solubility of 

these acids varied depending on factors like 

concentration and temperature, affecting the 

amount of citric acid and oxalic acid dissolved 

in the water. 

Citric acid was introduced in a 1:1 ratio, while 

oxalic acid was used in a 1:0.5 ratio in relation 

to the MWCNTs. After the MWCNTs were 

combined with the saturated acid solutions, 

they underwent a sonication process for 180 

minutes at a temperature of 40 °C. An 

ultrasound bath from BRANSON, located in 

Brookfield, CT, USA, was utilized for this 

purpose. Following sonication, the MWCNT-

acid mixtures were filtered and subsequently 

subjected to vacuum drying for a duration of 

24 hours at a temperature of 50 °C. [32-33]. 

 

FIGURE 3 Three well-known deep eutectic solvents      
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We present the outcomes of quantum 

chemical computations concerning three 

widely recognized deep eutectic solvents 

(DESs), as shown in Figure 3. Our goal is to 

elucidate the molecular interactions, charge 

transfer phenomena, and thermodynamic 

properties within these systems. The three 

DESs subject to our investigation include the 

1:1 mixture of choline chloride and malonic 

acid, referred to as "maloline," the 1:2 blend of 

choline chloride and ethylene glycol, known as 

"reline," and the 1:2 combination of choline 

chloride and urea, termed "ethaline." 

To identify the predominant interactions 

within these DES systems, we leveraged the 

strong correlation between the vibrational 

spectra computed through our calculations 

and those observed experimentally. Our 

findings revealed that these DESs are 

stabilized by a combination of conventional 

hydrogen bonds and interactions occurring 

between their individual components 

(specifically, C-H•••O and C-H••• 

interactions). It's noteworthy that the 

hydrogen-bonding network in the original 

hydrogen-bond donor dimer differs 

significantly from the one established in the 

DES [34-36].  

An examination of the density of states 

reinforces the direction of charge transfer 

within these systems. Moreover, the charge 

decomposition analysis indicates a notable 

transfer of charge from choline and chloride 

ions to the hydrogen-bond donor, with a more 

substantial contribution coming from the 

cation (choline). Consequently, there exists a 

correlation between the bond orders of the 

choline-chloride interactions in deep eutectic 

solvents (DESs) and their respective melting 

points. This correlation sheds light on how the 

adjustment of hydrogen-bond donors 

influences the strength of choline-chloride 

interactions, which in turn impacts the 

physical properties of DESs. 

Lastly, the observed variations in 

vibrational entropy changes align with the 

general trend in entropy changes that occur 

upon the formation of DESs [37-39]. 

 

FIGURE 4 The TNR/CNT nanocomposite was examined using XRD spectroscopy to determine its 

crystal structure 

Figure 4 presents XRD charts for both the 

nanocomposite CNTs and TNRs/CNTs. In the 

CNTs chart, a noticeable peak corresponding 

to XRD diffraction from the (002) plane is 



P a g e  | 1019 Advancements in plasma-enhanced chemical …  
 

 

 

observed at an angle of 26.32°. Additional 

reflections related to carbon's in-plane (100) 

and (101) positions are evident in the peaks at 

42.91° and 44.94°, respectively. The peak at 

65.74° is associated with XRD from the (004) 

plane. 

In the XRD pattern of TNRs/CNTs, three 

distinct peaks are visible at angles of 2θ = 

26.34°, 44.05°, and 53.48°, corresponding to 

the (002), (101), and (004) planes, 

respectively. Furthermore, the chart displays 

peaks at 33.0°, 47.76°, and 67.02°, which are 

attributed to the (310), (512), and (711) 

planes and are indicative of TiO2-B. [40,41]. 

The Scherrer equation, given by CS = 0.9 * λ 

/ (cosθ), where λ is the X-ray wavelength (for 

example, CuKα = 0.15405 nm), θ is the Bragg's 

angle in radians, and CS is the average 

crystallite size, was employed to compute the 

average crystallite size (CS). 

To determine the dislocation density (ρ), 

Williamson and Smallman's formula was used, 

where N = 1 signifies the minimum dislocation 

density, and ρ = N * CS^(-2). 

The texture coefficient (TC) is calculated 

using Equation (1). However, the specific 

details of Equation (1) are not provided in 

your text, so you would need to refer to the 

actual equation or provide it for a more 

detailed explanation.) [42,43]. 

 

FIGURE 5 NCIs (noncovalent interactions)    

A substantial community of chemists has 

dedicated significant efforts to the study of 

noncovalent interactions (NCIs) over an 

extended period, as shown in Figure 5. Their 

research has explored what are often referred 

to as the "canonical categories" of NCIs, which 

have been derived from descriptive 

crystallography. These categories encompass 

a range of interactions, including hydrogen 

bonds, π-interactions, 

halogen/chalcogen/tetrel bonds, cation-π 

interactions, C-H interactions, metallophilic 

interactions in a broad sense, and more. 

Recent advancements in theoretical 

chemistry have introduced innovative 

approaches for investigating noncovalent 

interactions. Notably, dispersion-force-

inclusive density functionals have emerged as 

reliable tools for modeling systems ranging 

from small molecules to large molecular 

complexes. These functionals provide a 

comprehensive framework for considering 
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dispersion forces, which are critical 

components of NCIs. 

Two prominent computational methods, 

DFT-D (Density Functional Theory with 

Dispersion Correction) and ab initio 

calculations, are employed to analyze the 

contributions of London, Debye, and Keesom 

forces. These forces represent the three 

primary types of van der Waals interactions. 

Importantly, these methods enable a detailed 

examination of these forces while maintaining 

computational efficiency, making them 

valuable tools for understanding the 

intricacies of noncovalent interactions [44-

46].   

Over the past 15 years, our research has 

been dedicated to exploring the role of 

noncovalent interactions (NCIs) in the 

cohesion of organometallic complexes. We've 

investigated how NCIs operate within both the 

primary and secondary coordination spheres 

of the metal, as defined by Werner's 

coordination theory. 

Our studies have revealed that NCIs play a 

crucial role in various aspects of 

organometallic chemistry. Specifically, we 

have observed their significance in metal-

metal donor-acceptor complexes, the self-

aggregation of cationic Rh(I) chromophores, 

and the stabilization of electron-unsaturated 

transition metal complexes through 

hemichelation. In all of these cases, the 

London dispersion force has emerged as a 

critical attractive force that operates across 

the entire molecule or molecular assembly, 

contributing to the overall stability and 

behavior of these organometallic systems [47-

49]  

While we have made significant progress in 

our ability to analyze bonding and molecular 

cohesion in transition-metal-based 

organometallic systems, a larger question 

remains: can contemporary theoretical 

methods guide us in exploring reactivity and 

engineering novel catalytic systems? This 

question is at the heart of our research efforts, 

particularly in the realm of reaction and 

catalyst engineering. 

To address this question, we focused on the 

study of transition metal-catalyzed directed C-

H bond functionalization. This process 

involves the activation of ambiphilic metal-

ligand interactions and concerted metalation-

deprotonation steps. Our project was initiated 

with the goal of establishing a rationale for 

transitioning from the use of 4th and 5th row 

transition metals to more readily available 3rd 

row metals, thus promoting the use of earth-

abundant elements in catalysis. This research 

seeks to not only understand the fundamental 

aspects of these reactions but also to enable 

the development of more sustainable and 

environmentally friendly catalytic systems 

[50-52].  

In the base-assisted method of C-H bond 

metalation, agonistic interactions are indeed 

essential, but they alone are not enough to 

facilitate the process effectively. What truly 

enables the dissolution of C-H bonds in this 

context is a combination of factors. One crucial 

aspect involves minimizing the repulsion 

between the metal and the hydrogen atom 

(metal-H repulsion), while another pivotal 

factor is the favorable noncovalent interaction 

(NCI) coding associated with a proton-transfer 

step. 

This Account outlines how our research 

focus has recently evolved towards the 

development of a chemical reactivity 

engineering paradigm that incorporates NCI 

effects as a fundamental consideration. To 

achieve this, we leverage state-of-the-art 

theoretical tools and experimental 

investigations. By integrating these 

approaches, we aim to gain a comprehensive 

understanding of the underlying principles 

that govern reactivity in chemical processes, 

ultimately leading to the development of more 

efficient and innovative chemical 

transformations. [53,54]. 
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FIGURE 6 The process flow diagram for making and evaluating MWCNTs dissolved in type 1 

water while adjusting the surfactant's molarity from 10 mM to 100 mM     

Nanomaterials incorporated into cement 

pastes have garnered significant attention due 

to their wide-ranging applications, making 

them a vital area of research within the 

cement industry. This study is designed to 

investigate how changes in the molarity of 

dispersed multiple-wall carbon nanotubes 

(MWCNTs) and varying storage durations 

impact the mechanical properties of cement 

paste. 

The investigation involved utilizing 

different surfactant molarities for the 

dispersion of 0.35% MWCNTs. Specifically, the 

following surfactant molarities were 

employed: (10, 20, 40, 60, 80, 20, 100) mM, as 

shown in Figure 6. This approach aims to shed 

light on the influence of MWCNT 

concentration and storage time on the 

mechanical characteristics of cement paste, 

providing valuable insights into their potential 

applications and performance in construction 

materials, as shown in Figure 7. [55-57]. 
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FIGURE 7 An illustration of the experimental setup       

 

FIGURE 8 the seven units of the energy-minimized amorphous cells 
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Native MWCNTs (20 mg) were placed on a 

glass Petri dish, and a vessel containing liquid 

bromine (50 mL) was sealed over the plate. In 

order to raise the bromine vapor pressure in 

the tank, there were three cycles of 7, 10, and 

14 days of intensive magnetic stirring. The 

vessel was heated to 30 °C while submerged in 

an oil bath. Following that time, the crude 

product was purified using the Drabowicz, 

Ciesielski, and Kulawik technique. To quickly 

and safely neutralize the bromine fumes, they 

were blasted out of the tank and into a sealed 

container containing sodium thiosulfate. They 

were then centrifuged at 14000 rpm until they 

reached a pH of neutral after being cleaned 

with distilled water. The remaining material 

was then centrifuged after being added 

methanol. The leftovers were heated at 65 °C 

in the oven for at least 12 hours. After adding 

10 mL of benzene to the sample to bind 

unreacted bromine, it was centrifuged once 

more. The benzene was then decanted, and the 

residue was kept for at least 12 hours in an 

oven at 80 °C to dry [58-60]. 

The energy-minimized amorphous cells 

with seven units of the membrane active layer 

are shown in Figure 8. The free accessible 

volume within the membrane materials at a 

probe radius of 0.84 is shown by the blue and 

grey isosurfaces. For the NH2-CNT (Figure 8a) 

and the HA-MWCNT (Figure 8b), the Connolly 

surface areas were estimated to be 20,000 and 

25,000 2, respectively. This significantly 

improves the accessibility of HA-MWCNT to 

solvents. In contrast, the Bondi equation's 

predicted fractional free volume (FFV) for the 

NH2-CNT and HA-MWCNT systems, 

respectively, yielded values of 0.296 and 0.305 

that were consistent with the Connolly surface 

area [61,62]. 

 

FIGURE 9 The MVO-CNTs' specific capacity as a function of galvanostatic charge/discharge cycles 

at various current density values  

The electrochemical characterization was 

conducted within Swagelok-type cells, using a 

polypropylene membrane (designated as 

Celgard 2300) as the separator, and metallic 

sodium served as both the counter and 

reference electrode. To create the electrolyte, 

a solution was prepared by mixing 1.0 mol L-1 

of NaPF6 with a blend of ethyl carbonate and 

propylene carbonate (EC:PC, 9:1, v/v 96 

chameleon Reagent). Throughout this 

research, the MVO-CNTs/CF electrode 

underwent a series of 20 discharge/charge 
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cycles, ranging from 1.0 to 3.5 V vs. Na/Na+ at 

the gravimetric density as shown in Figure 9. 

In a similar manner to a previous study [26], 

which employed MVO-CNTs as a model for 

pseudo-capacitive behavior, two 

voltammetric cycles were executed at the 

same potential window scan rate of 0.5 mV.s. 

Prior to assembling the cells, the electrodes 

were subjected to thermal treatment for 12 

hours at a temperature of 100°C and reduced 

pressure conditions. The assembly of the cells 

took place in a glove box filled with argon. [63-

65]. 

 

FIGURE 10 A diagram showing all the steps in the synthesis of MWCNTs 

MWCNTs were synthesized on a Si/SiO2 

substrate using a plasma-enhanced chemical 

vapor deposition (PECVD) technique, as 

depicted in Figure 10a. The growth of carbon 

nanotubes (CNTs) occurred on iron catalytic 

nanoparticles, which were formed through the 

decomposition of Fe(CO)5. 

To facilitate this process, a dual-flow nozzle 

electrode and a microwave plasma torch were 

utilized for depositing the iron oxide 

nanoparticles. Each sample featured a 

deposition area measuring 4 mm x 4 mm on a 

Si/SiO2 substrate, with all samples arranged in 

a holder. Argon gas was employed as the 

carrier gas, with flow rates of 700 sccm and 28 

sccm for the center and outer channels, 

respectively. The Fe(CO)5 vapor was 

introduced through the outer channel. The 

nanoparticle deposition was carried out for 15 

seconds, employing 210 W of plasma power. 

[66,67]. 
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FIGURE 11 SEM images and corresponding Raman spectra were obtained from various samples 

prepared using an acetylene flow rate of 100 sccm and different plasma conditions, specifically, 

a) 20 mA, b) 50 mA, and c) 70 mA. The insets provide additional information, including the RBM 

(Radial Breathing Mode) frequencies and the corresponding diameters of the Single-Walled 

Carbon Nanotubes (SWNTs).  

The provided description corresponds to 

an experimental setup involving Scanning 

Electron Microscope (SEM) imaging and 

Raman spectroscopy analysis of various 

samples. These samples were prepared under 

specific conditions, including an acetylene 

flow rate of 100 standard cubic centimeters 

per minute (sccm) and varying levels of 

plasma exposure at three different intensities: 

a) 20 mA, b) 50 mA, and c) 70 mA. The purpose 

of this investigation was to examine the 

structural and chemical properties of the 

samples under different plasma conditions 

[68]. 

In addition to SEM images and Raman 

spectra, the description mentions "insets" that 

provide additional information. Specifically, 

these insets offer insights into the Radial 

Breathing Mode (RBM) frequencies and the 

corresponding diameters of Single-Walled 

Carbon Nanotubes (SWNTs) present in the 

samples, as shown in Figure 11. This 
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comprehensive approach allows researchers 

to gain a better understanding of how 

different plasma conditions influence the 

growth and properties of SWNTs, as the RBM 

frequencies and diameters serve as crucial 

indicators of the nanotubes' structural 

characteristics. 

 
FIGURE 12 SEM images and Raman spectra were acquired for Carbon Nanotubes (CNTs) grown 

on Al2O3/SiO2/Si substrates with Fe precursor films of varying thickness, namely (a) 2 nm, (b) 5 

nm, and (c) 10 nm. Additionally, (d) the corresponding Raman spectra were obtained. The insets 

in (a), (b), and (c) feature SEM images of the H-plasma-pretreated samples, prepared under 

specific conditions, including a CH4/H2 ratio of 1, a flow rate of 300 sccm, a working pressure of 

16 Torr, and a plasma power of 750 W, with a growth time of 6 minutes.    

The presented Figure 12 showcases a 

comprehensive analysis of Carbon Nanotubes 

(CNTs) grown on Al2O3/SiO2/Si substrates, 

featuring Scanning Electron Microscope 

(SEM) images and Raman spectroscopy data. 

The study focuses on CNTs grown with Fe 

precursor films of varying thickness, 

specifically (a) 2 nm, (b) 5 nm, and (c) 10 nm. 

SEM images provide detailed visual insights 

into the morphological characteristics of these 

CNTs, highlighting how the thickness of the Fe 

precursor films influences their growth and 

structure. Additionally, (d) corresponding 

Raman spectra were collected, offering 

valuable information about the vibrational 

and structural properties of the CNTs under 

different film thickness conditions [69]. 

Moreover, the insets in (a), (b), and (c) offer 

SEM images of H-plasma-pretreated samples. 

These samples were prepared under specific 

conditions, which included a CH4/H2 ratio of 

1, a flow rate of 300 sccm, a working pressure 

of 16 Torr, and a plasma power of 750 W, with 

a growth time of 6 minutes. These insets 

demonstrate the impact of plasma 

pretreatment on the CNTs' growth and 

morphology, providing a comprehensive 

understanding of how various parameters 

influence the development of CNTs on 

Al2O3/SiO2/Si substrates. 
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FIGURE 13 SEM images and their corresponding Raman spectroscopy results depict various 

structures grown on titanium substrates following a pre-cleaning process. (a) Shows the growth 

of TiO2 nanowhiskers in an Ar-Ar/O2 environment, while (b) displays the growth of TiS2 

nanosheets in an Ar/Cl2 (2%)-Ar/O2 environment. (c) Features the Raman spectroscopy results 

for (b). (d) Represents a sample subjected to abrupt extraction using a cooling and venting 

apparatus following sulfurization. (e) Illustrates the transformation of 3D sheets in the growth 

environment of Ar/Cl2 (0.5%)-Ar/O2 gas streams. Lastly, (f) presents the observed Raman 

spectroscopy results for (e), confirming the presence of Anatase, Rutile, and Brookite phases 

within the TiO2 structures     

The provided Figure 13 offers a 

comprehensive insight into a research study 

involving Scanning Electron Microscope 

(SEM) images and Raman spectroscopy 

results. It portrays the diverse range of 

structures cultivated on titanium substrates 

subsequent to a meticulous pre-cleaning 

process. In (a), the image highlights the 

successful growth of TiO2 nanowhiskers in an 

Ar-Ar/O2 environment. In (b), a contrasting 

scene emerges, showcasing the development 

of TiS2 nanosheets within an Ar/Cl2 (2%)-

Ar/O2 environment. The ensuing (c) section 

exhibits the Raman spectroscopy outcomes 

for the TiS2 nanosheets, offering valuable 

information regarding their structural 

properties and vibrational characteristics 

[70]. 

The visual narrative proceeds to (d), where 

we witness a sample that has undergone an 

abrupt extraction process through the 

utilization of a cooling and venting apparatus 

following sulfurization. This process is 

instrumental in altering the sample's 

morphology and properties, marking an 

important phase in the study. The subsequent 

sequence, featured in (e), portrays the 

transformation of 3D sheets within the growth 

environment of Ar/Cl2 (0.5%)-Ar/O2 gas 

streams, presenting another facet of the 

research's findings. Lastly, (f) delivers the 

observed Raman spectroscopy results for the 

transformed 3D sheets in (e), ultimately 

confirming the presence of Anatase, Rutile, 

and Brookite phases within the TiO2 

structures, thus shedding light on the 

structural diversity within the materials 

grown on the titanium substrates. 

Conclusion 

In conclusion, this research underscores the 

significance of plasma-enhanced chemical 

vapor deposition (PECVD) for the controlled 
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growth of multi-walled carbon nanotubes 

(MWCNTs) on Si/SiO2 substrates. The 

utilization of iron oxide nanoparticles as 

catalysts introduces a novel approach to 

enhance growth uniformity and alignment, 

thereby enabling tailored nanotube 

structures. The comprehensive structural 

characterization, achieved through scanning 

electron microscopy (SEM) and Raman 

spectroscopy, provides in-depth insights into 

MWCNT properties and their correlation with 

deposition parameters. These findings hold 

promising implications for nanomaterial 

applications, positioning PECVD as a pivotal 

technique for advancing nanotechnology and 

facilitating the development of high-

performance electronic devices and energy 

storage systems. 
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