Document Type : Original Research Article


1 Department of Biological Education, Faculty of Teaching and Education, Universitas Muhammadiyah Malang, Tlogomas Street No. 246, Post code 034146431, Malang, East Java, Indonesia

2 Department of Chemistry, Faculty of Mathemetics and Natural Sciences, Universitas Negeri Padang, Indonesia


Docking is a method to predict the strength of the interaction between the receptor and the ligand based on the binding affinity value. The docking carried out in this study is a specific docking with a grid box imitating the bond between AR and inhibitor control drugs. This study aimed to investigate stigmasterol from beluntas leaves potential molecularly as antifertility in men. This type of research is descriptive and exploratory. The research was carried out from November to December 2019. The research was carried out with the help of Indonesia's Bioinformatics and Biomolecular Analysis Organization (INBIO). Method of analysis with 3 steps: (1) Looking for a collection of metabolites and pass online, (2) molecular docking and MD simulation, and (3) drug-likeness and toxicity. Determination of compound potency based on binding affinity value. The more negative the binding affinity, the stronger the interaction between the receptor and the ligand. The results showed that it was predicted that stigmasterol could attach to the same active site (of Methyltrienolone) as the control to affect AR. Stigmasterol has a binding affinity value close to that of the inhibitor control, which is -5.4 kcal/mol, while the inhibitory control has a binding affinity value of -4.6 kcal/mol. The ideal value for control is -7 kcal/mol. The results of the MD Simulation analysis found that the AR-Stigmasterol complex was more stable than the AR-Cyproterone acetate complex due to its lower RMSD and RMSF values. The finding of this study confirmed that stigmasterol from beluntas leaves has the potential as an antifertility for men.

Graphical Abstract

Insilico study of stigmasterol extracted from pluchea indica as antiferility in men


Main Subjects

[1] S.G. Brown, S. Costello, M.C. Kelly, M. Ramalingam, E. Drew, S.J. Publicover, S.M. Da Silva, Complex CatSper-dependent and independent [Ca2+] i signalling in human spermatozoa induced by follicular fluid, Hum. Reprod., 2017, 32, 1995-2006.[Crossref], [Google Scholar], [Publisher]
[2] L.S. Allag, K. Rangari, Extragenomic action of steroids on spermatozoa, prospect for regulation of fertility, Health Popul., 2002, 25, 38-44. [Google Scholar], [Publisher]
[3] S.A. Wilopo. Perkembangan Teknologi Kontrasepsi Pria Terkini, Gema Pria. 2006.
[4] S. Muslichah, Wiratmo, Efek Antifertilitas Fraksi n-Heksana, Fraksi Kloroform, dan Fraksi Metanol Biji Pepaya ( Carica papaya L .) Terhadap Tikus Jantan Galur Wistar, Journal Farmasi Sains Dan Terapan, 2015, 2, 10-14.[Crossref], [Google Scholar], [Publisher]
[5] B.K. Satriyasa, I.G.A. Widianti, I.B.G.F. Manuaba, I.B.G. Fajar. Depot medroxyprogesterone acetate reduces spermatogonia cells and spermatid cells in the seminiferous tubules of male mice, Bali Med. J., 2022, 11, 508-512. [Google Scholar], [Publisher]
[6] A. Cook, C. Glass, Above the glass ceiling: When are women and racial/ethnic minorities promoted to CEO? Strateg. Manag. J., 2014, 35, 1080-1089.[Crossref], [Google Scholar], [Publisher]
[7] S. Juwita, N.B. Argaheni, A.S. Marni, M. Hutajulu, The role of women in improving family welfare through family planning Safari program, Community Dev. J., 2023, 7.2: 113-119. [Crossref], [Google Scholar], [Publisher]
[8] A. Ignaciuk, Innovation and maladjustment: Contraceptive technologies in state-socialist Poland, 1950s-1970s, Technol. Cult., 2022, 63, 182-208.[Crossref], [Google Scholar], [Publisher]
[9] R.M. Rukmana, B. Muchtaromah, A. Barizi, Penurunan jumlah sel spermatosit primer dan sel spermatid tubulus seminiferus mencit (Mus musculus) yang diberi ekstrak daun beluntas (Plucea indica Less), Biomedika, 2014, 7, 1-5.[Crossref], [Google Scholar], [Publisher]
[10] B. Prajogo, W.M. Tandjung, Pengaruh fraksi polifenol Gendarussa vulgaris nees pada penurunan aktivitas hialuronidase spermatozoa mencit melalui Uji fertilisasi in vitro, J. Penelit. Med. Eksakta., 2003, 4, 10-14. [Google Scholar], [Publisher]
[11] M. Chieze, S. Hurst, S. Kaiser, O. Sentissi, Effects of seclusion and restraint in adult psychiatry: a systematic review, Front. psychiatry, 2019, 10, 491. [Google Scholar], [Publisher]
[12] C. Gabayy, C. Sanchezyzb, F. Salvaty, M. Chevyx, G Bretonx., C. Nourissatyk, C. Wolfx, F., B. Jacquesy, Stigmasterol: a phytosterol with potential anti-osteoarthritic properties, Osteoarthr. Cartil., 2010, 18, 1016-1116.[Crossref], [Google Scholar], [Publisher]
[13] X. Luo, P. Su, W. Zhang, Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications, Mar. Drugs, 2015, 13, 4231-4254. [Crossref], [Google Scholar], [Publisher]
[14] N. Handayani, D. Aprilia, A. Tenzer, A. Gofur, Effect of decoction simplicia pulutan (Urena lobata L.) leaves against the number of follicles strains Balb-C mice, AIP Conf. Proc., 2020, 2231.[Crossref], [Google Scholar], [Publisher]
[15] B. Shukla, S. Saxena, S. Usmani, P. Kushwaha, Phytochemistry and pharmacological studies of Plumbago zeylanica L.: a medicinal plant review, Clin. Phytosci., 2021, 7, 1-11.[Crossref], [Google Scholar], [Publisher]
[16] W. Xie, H. Yang, C. Guo, R. Xie, G. Yu, Y. Li, Integrated network pharmacology and experimental validation approach to investigate the mechanisms of stigmasterol in the treatment of rheumatoid arthritis, Drug Des. Devel. Ther., 2023, 691-706.[Crossref], [Google Scholar], [Publisher]
[17] B. Alberts, Molecular biology of the cell, Garland Science. 2017. [Google Scholar], [Publisher]
[18] K. Wilson, A. Hofmann, J.M. Walker, S. Clokie (Eds.), Wilson and Walker's principles and techniques of biochemistry and molecular biology, Cambridge University Press, 2018‎. [Google Scholar], [Publisher]
[19] T. Pantsar, A. Poso, Binding affinity via docking: fact and fiction, Molecules, 2018, 23, 1899.[Crossref], [Google Scholar], [Publisher]
[20] A.A. Naqvi, T. Mohammad, G.M. Hasan, M.I. Hassan, Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships, Curr. Top. Med. Chem., 2018, 18, 1755-1768.[Crossref], [Google Scholar], [Publisher]
[21] G. Chinta, In silico and in vitro investigation of the piperineʼs male contraceptive effect: docking and molecular dynamics simulation studies in androgen-binding protein and androgen receptor, Planta Medica, 2015, 14, 804–812.[Crossref], [Google Scholar], [Publisher]
[22] Y. Islamiati, Y. Suryani, A. Adawiyah, O. Taufiqurrohman, V.D. Kharisma, D. Purnamasari, M.T. Albari, The potential of antivirus compounds in gletang (Tridax procumbens Linn.) in inhibiting 3CLpro receptor of SARS-CoV-2 virus by in silico, Pharmacogn. J., 2022, 14.[Crossref], [Google Scholar], [Publisher]
[23] M.E. Ullah, R.T. Probojati, A.A.A. Murtadlo, M.B. Tamam, S.W. Naw, Revealing of atiinflamatory agent from zingiber officinale var. roscoe via IKK-B inhibitor mechanism through in silico simulation, SAINSTEK nt. J. Appl. Sci., Adv. Technol. Inform., 2022, 1, 14-19.[Crossref], [Google Scholar], [Publisher]
[24] N. Mawaddani, E. Sutiyanti, M.H. Widyananda, V.D. Kharisma, D.D.R. Turista, M.B. Tamam, R. Zainul, In silico study of entry inhibitor from moringa oleifera bioactive compounds against SARS-CoV-2 infection, Pharmacogn. J., 2022, 14.[Crossref], [Google Scholar], [Publisher]
[25] A.A. Rabaan, M.A. Halwani, M. Aljeldah, B.R. Al Shammari, M. Garout, J. Aldali, A. Alsayyah, Exploration of potent antiviral phytomedicines from Lauraceae family plants against SARS-CoV-2 RNA-dependent RNA polymerase, J. Biomol. Struct. Dyn., 2023, 1-21. [Crossref], [Google Scholar], [Publisher]
[26] A.A.A. Murtadlo, P. Listiyani, S.L. Utami, S. Wahyuningsih, D.D.R. Turista, A. Wiguna, M.E. Ullah, Molecular docking study of Nigella sativa bioactive compound as E6 inhibitor against human papillomavirus (HPV) infection, SAINSTEK Int. J. Appl. Sci., Technol., 2022, 1, 32-38.[Crossref], [Google Scholar], [Publisher]
[27] L. Rosalina, D. Purnamasari, R. Verawati, O. Suryani, M.A. Ghifari, A. Putri, A.N.M. Ansori, In silico study on the inhibition of sitogluside from clove plant (Syzygium aromaticum) on interleukin 2 in B and T cell proliferation, Pharmacogn. J., 2023, 15.[Crossref], [Google Scholar], [Publisher]
[28] V.D. Kharisma, A.N.M. Ansori, F.A. Dian, W.C. Rizky, T.G.A. Dings, R. Zainul, A.P. Nugraha, Molecular docking and dynamic simulation of entry inhibitor from tamarindus indica bioactive compounds against Sars-Cov-2 infection via viroinformatics study, Biochem. Cell. Arch., 2021, 21, 3323-3327. [Google Scholar], [Publisher]
[29] G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties,          Nucleic Acids Res., 2021, 49, W5-W14.[Crossref], [Google Scholar], [Publisher]
[30] J. Lemkul, From proteins to perturbed hamiltonians: a suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0], LiveCoMS, 2019, 1, 1-53.[Crossref], [Google Scholar], [Publisher]
[31] A.N.M. Ansori, V.D. Kharisma, A.A. Parikesit, F.A. Dian, R.T. Probojati, M. Rebezov, R. Zainul, Bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanism against SARSCoV-2: an in silico approach, Pharmacogn. J., 2022, 14.[Crossref], [Google Scholar], [Publisher]
[32] R.T. Probojati, S.L. Utami, D.D.R. Turista, A. Wiguna, P. Listiyani, A. Wijayanti, S.W. Naw, Revealing of ati-inflammatory agent from Garcinia mangostana L. phytochemical as NF-κB inhibitor mechanism through In Silico Study, Int. J. on Appl. Sci., Advanced Technol., 2022, 1, 54-61.[Crossref], [Google Scholar], [Publisher]
[33] M. Gupta, H.J. Lee, C.J. Barden, D.F. Weaver, The blood-brain barrier (BBB) score, J. Med. Chem., 2019, 62, 9824-9836.[Crossref], [Google Scholar], [Publisher]
[34] J. Keaney, M. Campbell, The dynamic blood-brain barrier, The FEBS Journal, 2015, 282, 4067-4079.[Crossref], [Google Scholar], [Publisher]
[35] Y. Lin, A.K. Banerjee, H. Wu, F. Tan, H. Feng, G. Tan, Y. Huang, Prominent genetic structure across native and introduced ranges of Pluchea indica, a mangrove associate, as revealed by microsatellite markers, J. Plant Ecology, 2020, 13, 341-353.[Crossref], [Google Scholar], [Publisher]
[36] S.R. Ibrahim, A.M. Omar, A. A. Bagalagel, R.M. Diri, A.O. Noor, D.M. Almasri, G.A. Mohamed, Thiophenes-naturally occurring plant metabolites: Biological activities and in silico evaluation of their potential as cathepsin D inhibitors, Plants, 2022, 11, 539.[Crossref], [Google Scholar], [Publisher]
[37] T. Fathi Najafi, M. Hejazi, F. Feryal Esnaashari, E. Sabaghiyan, S. Hajibabakashani, Z. Yadegari, Assessment of sperm apoptosis and semen quality in infertile men-meta analysis, Iran. Red Crescent Med. J., 2012, 14, 182-183. [Crossref], [Google Scholar], [Publisher]
[38] J.F. Fatriansyah, R.K. Rizqillah, M.Y. Yandi, Fadilah, M. Sahlan, Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2, Jo. King Saud Uni. Sci., 2022, 34, 101707. [Crossref], [Google Scholar], [Publisher]
[39] R. Zainul, R. Verawati, H. Satriawan, T.L. Wargasetia, D. Purnamasari, A.P. Lubis, A.N. M.Ansori, Molecular dcking of thaflavine from Camellia sinensis in inhibiting B-cell Lymphoma trough BCl2 apoptosis Rrgulator: an in silico study, Pharmacogn. J., 2023, 15.[Crossref], [Google Scholar], [Publisher]
[40] J.M. Wang, Z.F. Li, W.X. Yang, What does androgen receptor signaling pathway in sertoli cells during normal spermatogenesis tell us?, Front. Endocrinol., 2022, 13, 838858.[Crossref], [Google Scholar], [Publisher]
[41] C. Braicu, N. Mehterov, B. Vladimirov, V. Sarafian, S.M. Nabavi, A.G. Atanasov, I. Berindan-Neagoe, Nutrigenomics in cancer: Revisiting the effects of natural compounds, In Semin. cancer biol., 2017, 46, 84-106. Academic Press.[Crossref], [Google Scholar], [Publisher]
[42] S.D. Ambavade, A.V. Misar, P.D. Ambavade, Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review, Orient. Pharm. Exp. Med., 2014, 14, 193-211.[Crossref], [Google Scholar], [Publisher]
[43] H. Nurmahliati, F. Widodo, O. Puspita eka, Effect of sy lecithin and sodium cholate concentration on characterization pterostilbene transfersomes, Pharm. J. Indones., 2020, 005, 109-115. [Crossref], [Google Scholar], [Publisher]
[44] M. Sianturi, N.D. Malau, Simulasi dnamika molekul enzim xilanase Aspergillus niger untuk meningkatkan kestabilan termal. Prosiding Seminar Nasional MIPA 2016, November, 2016, 15–23. [Google Scholar], [Publisher]
[45] D. Selvaraj, S. Muthu, S. Kotha, R.S. Siddamsetty, S. Andavar, S. Jayaraman, Syringaresinol as a novel androgen receptor antagonist against wild and mutant androgen receptors for the treatment of castration-resistant prostate cancer: molecular docking, in-vitro and molecular dynamics study, J. Biomol. Struct. Dyn., 2021, 39, 621-634.[Crossref], [Google Scholar], [Publisher]
[46] M.S. Zubair, S. Maulana, A. Mukaddas, Penambatan molekuler dan simulasi dinamika molekuler senyawa dari gnus Nnigella trhadap penghambatan kktivitas enzim protease HIV-1. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 2020, 6, 132-140. [Crossref], [Google Scholar], [Publisher]
[47] M. Abdalla, W.A. Eltayb, A.A. El-Arabey, K. Singh, X. Jiang, Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties, Computers in Biology and Medicine, 2022, 141, 105025. [Crossref], [Google Scholar], [Publisher]
[48] T.R. Weikl, F. Paul, Conformational selection in protein binding and function, Protein Science, 2014, 23, 1508-1518. [Crossref], [Google Scholar], [Publisher]
[49] L. Loganathan, B.B. Kuriakose, S. Mushfiq, K. Muthusamy, Mechanistic insights on nsSNPs on binding site of renin and cytochrome P450 proteins: A computational perceptual study for pharmacogenomics evaluation, J. Cell. Biochem., 2021, 122, 1460-1474.[Crossref], [Google Scholar], [Publisher]
[50] B. Saffari, M. Amininasab, Crocin inhibits the fibrillation of human α-synuclein and disassembles mature fibrils: Experimental findings and mechanistic insights from molecular dynamics simulation, ACS Chem. Neurosci., 2021, 12, 4037-4057.[Crossref], [Google Scholar], [Publisher]
[51] S. Raj, S. Sasidharan, V.K. Dubey, P. Saudagar, Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation, PLOS ONE, 2019, 14, 1-20. [Crossref], [Google Scholar], [Publisher]
[52] S. Sriraman, G.M. Ramanujam, M. Ramasamy, G.P. Dubey, Identification of beta-sitosterol and stigmasterol in Bambusa bambos (L.) Voss leaf extract using HPLC and its estrogenic effect in vitro J. Pharm. Biomed. Anal., 2015, 115, 55-61.[Crossref], [Google Scholar], [Publisher]
[53] N. Kaur, J. Chaudhary, A. Jain, L. Kishore, Stigmasterol: a comprehensive review, IJPRS, 2011, 2, 2259-2265.[Crossref], [Google Scholar], [Publisher]
[54] K. Singh, R.S. Gupta, Antifertility activity of Β-sitosterol isolated from Barleria Prionitis (L.) roots in male albino rats, Int. J. Pharm. Sci., 2016, 8, 89-96 [Google Scholar], [Publisher]
[55] A. Chaudhary, R. Kumari, P. Thakur, Mitigation of various ailments via a bioactive component of Tribulus terrestris: a medicinally important herb, Ethnobot. Res. Appl., 2023, 25, 1-17. [Google Scholar], [Publisher]
[56] A. Doğan, S. Otlu, Ö. Çelebi, P. Aksu, A.G. Sağlam, A.N.C. Doğan, N. Mutlu, An investigation of antibacterial effects of steroids, Turkish J. Vet. Anim. Sci., 2017, 41, 302-305.[Crossref], [Google Scholar], [Publisher]
[57] B.V. Bonifacio, P.B. da Silva, M.A.D.S. Ramos, K.M.S. Negri, T.M. Bauab, M. Chorilli, Nanotechnology-based drug delivery systems and herbal medicines: a review, Int. J. Nanomedicine, 2014, 1-15.[Crossref], [Google Scholar], [Publisher]
[58] A. Nurliani, Rusmiati, H.B. Santoso, Perkembangan Sel Spermatogenik Mencit (Mus musculus L) Setelah Pemberian Ekstrak Kulit Kayu Durian (Durio zibenthinus Murr), Berk. Penel. Hayati, 2005, 11, 77-79.[Crossref], [Google Scholar], [Publisher]
[59] T. Elraiyah, M.B. Sonbol, Z. Wang, T. Khairalseed, N. Asi, C. Undavalli, M.H. Murad, The benefits and harms of systemic testosterone therapy in postmenopausal women with normal adrenal function: a systematic review and meta-analysis, J. Clin. Endocrinol. Metab., 2014, 99, 3543-3550.[Crossref], [Google Scholar], [Publisher]
[60] K. Karkazis, M. Carpenter, Impossible “choices”: the inherent harms of regulating women’s testosterone in sport, J. Bioethical Inq., 2018, 15, 579-587.[Crossref], [Google Scholar], [Publisher]
[61] P. Saxena, R. Gupta, R.S. Gupta, Contraceptive studies of isolated fractions of Cuminum cyminum in male albino rats, Nat. Prod. Res., 2015, 29, 2328-2331.[Crossref], [Google Scholar], [Publisher]
[62] B.B. de Mendonca, E.M.F. Costa, Physiology of male gonadotropic axis and disorders of sex development, Testosterone:  From Basic to Clinical Aspects, 2017, 75-96.[Crossref], [Google Scholar], [Publisher]