Document Type : Original Research Article


1 Department of Sport Science, Faculty of Sport, Universitas Sebelas Maret,Indonesia

2 Department of Sport Education, Faculty of Teacher and Education, Universitas Pendidikan Muhammadiyah Sorong, Indonesia

3 Department of Education, Faculty of Sport Education, Universitas Tanjungpura, Indonesia

4 Department of Sport Science, Faculty of Sport, Universitas Sebelas Maret, Indonesia

5 Department SPort Science, Faculty of Sport, Universitas Sebelas Maret Surakarta

6 dDepartment of Sport, Faculty of Sport Education, Universitas Tunas Pembangunan, Indonesia

7 Department of Sport Coaching, Faculty of Education, Universitas Tanjungpura, West Kalimantan, Indonesia

8 Department of Physiotherapy, Faculty of Health Sciences, Universitas Muhammadiyah Surakarta, Indonesia

9 Department of Sport Science, Universitas Negeri Yogyakarta,Indonesia


The prevalence of diabetes worldwide is increasing; other infectious diseases, such as obesity-related diseases, include hypertension, heart disease, dyslipidemia, and diabetes mellitus (DM). Physical exercise is known to control blood sugar. This study aims to determine the effect of high-intensity interval training on blood sugar in people with type 2 diabetes mellitus. We conducted a pre and post-test laboratory experiment with 20 participants who underwent HIIT, including outdoor running, treadmill exercises, and exercise bikes, with a 1:3 work-to-rest ratio. Blood sugar levels were assessed before and after the intervention. Our study found a statistically significant decrease in blood sugar levels following the HIIT intervention (p-value = 0.001). These results suggest that high-intensity interval training can effectively lower blood sugar levels in individuals with type 2 diabetes mellitus.

Graphical Abstract

The effects of high-intensity interval training on blood sugar levels in type 2 diabetes mellitus patients: A study in southwest Papua


[1] a) C.C. Cal Abad, A.M. do Nascimento, L.E.D. Santos, D. Figueroa, P. Ramona, M. Sartori, K.B. Scapini, O. Albuquerque, I.C. Moraes-Silva, H.J. Coelho-Júnior, B. Rodrigues, C. Teixeira Mostarda, K. De Angelis, M. Cláudia Irigoyen, Interval and continuous aerobic exercise training similarly ‎increase cardiac function and autonomic modulation in infarcted mice, J. Exerc. Rehabil., ‎2017, 13, 257–265. [Crossref], [Google Scholar], [Publisher] ‎b) O. Purwanti, P. Nurani, A.U. Wulandari, The Effect of Video Education About ‎Hypoglycemia on Knowledge of Diabetes Mellitus Patients, J. Med. Chem. Sci., 2021, 4, 267-278. [Crossref], [Google Scholar], [Publisher] c) A.R. Lotfi, ‎H. Owaysee Osquee. Investigating Factors Affecting Hospitalization of Patients ‎with Mucormycosis After Contracting Covid-19: A Systematic Review, Int. J. Adv. Biol. Biomed. Res., 2023, 11, 35-47. [Crossref], [Google Scholar], [Publisher]  ‎
‎[2] a) M.W. Dewangga, D.P. Irianto, The differences frequency of weekly physical ‎exercise in antioxidant serum levels and muscle damage, Fizjoterapia Pol., 2023, 2, ‎‎112–120. [Crossref], [Publisher] b) R.A. Abu-Almaaly, Improving Rheological and Sensory Properties of Flour and Laboratory Cake ‎Using Different Concentrations of Guar Gum, Chem. Method., 2022, 6, 691-698. ‎[Crossref], [Google Scholar], [Publisher] c) R. Alimoradzadeh, N. Moosavi‎, A. Karimkoshteh, Z. sadeghi, M. Milanifard, A. Ismaili, Investigation of the ‎Chemistry of Metformin by Targeting the Nrf2 Signaling Pathway (A response Surface ‎Methodology Approach), Chem. Methodol., 2022, 6, 166-173. [Crossref], [Google Scholar], [Publisher]   
‎[3] M.P. da Silveira, K.K. da Silva Fagundes, M.R. Bizuti, É. Starck, R.C. Rossi, D.T. ‎de Resende e Silva, Physical exercise as a tool to help the immune system against COVID-‎‎19: an integrative review of the current literature, Clin. Exp. Med., 2021, 21, 15–‎‎28. [Crossref], [Google Scholar], [Publisher]  
‎[4] Y. Wu, Y. Ding, Y. Tanaka, W. Zhang, Risk Factors Contributing to Type 2 ‎Diabetes and Recent Advances in the Treatment and Prevention, Int. J. Med. Sci., 2014, 11, 1185–1200. [Crossref], [Google Scholar], [Publisher]  
‎[5] a) A.D. Wake, Antidiabetic Effects of Physical Activity: How It Helps to Control ‎Type 2 Diabetes, Diabetes, Metab. Syndr. Obes. Targets Ther., 2020, 13, 2909–‎‎2923. [Crossref], [Google Scholar], [Publisher] b) M. Nazari, ‎M. A. Osquee, Comparison of Blood Sugar Changes during Orthopedic Surgeries in ‎Patients under Spinal Anesthesia and General Anesthesia: A Systematic Review, Prog. Chem. Biochem. Res., 2023, 6, 133-142. [Crossref], [Pdf], [Publisher]  
‎[6] B. Hidayat, R.V. Ramadani, A. Rudijanto, P. Soewondo, K. Suastika, J.Y. Siu Ng, ‎‎Direct Medical Cost of Type 2 Diabetes Mellitus and Its Associated Complications in ‎Indonesia, Value Heal. Reg. Issues, 2022, 28, 82–89. [Crossref], [Google Scholar], [Publisher]  
‎[7] J. Liu, R. Bai, Z. Chai, M.E. Cooper, P.Z. Zimmet, L. Zhang, Low- and middle-‎income countries demonstrate rapid growth of type 2 diabetes: an analysis based on ‎Global Burden of Disease 1990–2019 data, Diabetologia, 2022, 65, 1339–1352. [Crossref], [Google Scholar], [Publisher]
[8] E.M. Støa, S. Meling, L.K. Nyhus, G. Strømstad, K.M. Mangerud, J. Helgerud, S. Bratland-Sanda, Ø. Støren, High-intensity aerobic interval training improves aerobic fitness ‎and HbA1c among persons diagnosed with type 2 diabetes, Eur. J. Appl. Physiol., 2017, 117, ‎455–467.‎ [Crossref], [Google Scholar], [Publisher]  
‎[9] S. R. Colberg, R.J. Sigal, J.E. Yardley, M.C. Riddell, D.W. Dunstan, P.C. Dempsey, E.S. Horton, K. Castorino, D.F. Tate, Physical Activity/Exercise and Diabetes: A Position Statement ‎of the American Diabetes Association, Diabetes Care, 2016, 39, 11, 2065–2079.‎ [Crossref], [Google Scholar], [Publisher]  
‎[10] M.M. Atakan, Y. Li, Ş.N. Koşar, H.H. Turnagöl, X. Yan, Evidence-Based Effects ‎of High-Intensity Interval Training on Exercise Capacity and Health: A Review with ‎Historical Perspective, Int. J. Environ. Res. Public Health, 2021, 18, 7201. [Crossref], [Google Scholar], [Publisher]  ‎
[11] J.P. Kirwan, J. Sacks, S. Nieuwoudt, The essential role of exercise in the ‎management of type 2 diabetes, Cleve. Clin. J. Med., 2017, 84, S15–S21‎‎.‎ [Crossref], [Google Scholar], [Publisher]   
[12] Y. Liu, W. Ye, Q. Chen, Y. Zhang, C.-H. Kuo, M. Korivi, Resistance Exercise ‎Intensity is Correlated with Attenuation of HbA1c and Insulin in Patients with Type 2 ‎Diabetes: A Systematic Review and Meta-Analysis, Int. J. Environ. Res. Public Health, 2019, ‎‎16, 140.‎ [Crossref], [Google Scholar], [Publisher]  
‎[13] A. Myrkos, I. Smilios, A. Zafeiridis, S. Iliopoulos, E.M. Kokkinou, H. Douda, S.P Tokmakidis., Effects of Work and Recovery Duration and Their Ratio on ‎Cardiorespiratory and Metabolic Responses During Aerobic Interval Exercise, J. Strength Cond. Res., 2022, 36, 2169–2175. [Crossref], [Google Scholar], [Publisher]  
‎[14] M.W. Dewangga, D. Dimyati, D.P. Irianto, Antioxidant effect of purple ‎sweet potato (Ipomoea batatas var. Antin 3) for the prevention of oxidative stress after ‎high-intensity physical exercise in rat', J. Med. Pharm. Chem. Res., 2022, 4, 921-‎‎929. ‎ [Pdf], [Publisher]  
[15] U. Galicia-Garcia, A. Benito-Vicente, S. Jebari, A. Larrea-Sebal, H. Siddiqi, K. B Uribe, H. Ostolaza, C. Martín, Pathophysiology of Type 2 Diabetes Mellitus, Int. J. Mol. Sci., 2020, 21, 6275.‎ [Crossref], [Google Scholar], [Publisher]  
‎[16] C.T. Bramante, C.J. Lee, K.A. Gudzune, Treatment of Obesity in Patients With ‎Diabetes, Diabetes Spectr., 2017, 30, 237–243. [Crossref], [Google Scholar], [Publisher]  
[17] M.A. Fuad, R. Rumini, A. Wahyudi, S. Sumartiningsih, The Effect of Exercise ‎Method and Body Mass Index on Time Exhaustion, Lung’s Vital Capacity and VO 2 Max, J. Phys. Educ. Sport., 2022, 11, 68–75. [Crossref], [Google Scholar], [Publisher]  
‎[18] Syamsuryadin, Suharjana, R.L. Ambardini, M.W. Dewangga, A. Sirada, S. Hutomono, N.P. Budi Santoso, Correlation between Body Mass Index and Cardiovascular ‎Fitness of Volleyball Athletes at Athletes Training Center during the Covid-19 Pandemic, ‎J. Med. Chem. Sci., 2022, 5. [Crossref], [Google Scholar], [Publisher]  
‎[19] M.W. Dewangga, I. Djoko Pekik, D. Dimyati, S. Sumaryanto, N. Taufiqqurachman, F. Yudha, W. Wahyuni, W. Wijianto, A. Agustiyawan, Different Effects of Acute and Chronic Strenuous Physical ‎Exercise on Superoxide Dismutase (SOD), Malondialdehyde (MDA) Levels, and Sperm ‎Quality of the Wistar Rats, J. Kerman Univ. Med. Sci., 2021, 28, 539–547. [Crossref], [Google Scholar], [Publisher]  
‎[20] S. Abdi, V. Tadibi, D. Sheikholeslami-Vatani, Effect of High-intensity Interval ‎Training on Endothelial Function in Type 2 Diabetic Females, Asian J. Sports Med., 2021, 12. [Crossref], [Google Scholar], [Publisher]  
‎[21] K. Marcinko, S.R. Sikkema, M.C. Samaan, B.E. Kemp, M.D. Fullerton, G.R. ‎Steinberg, High intensity interval training improves liver and adipose tissue insulin ‎sensitivity, Mol. Metab., 2015, 4, 903–915. [Crossref], [Google Scholar], [Publisher]  
‎[22] M.W. Dewangga, Dimyati, D.P. Irianto, Antioxidant effect of purple sweet ‎potato (Ipomoea batatas var. Antin 3) for the prevention of oxidative stress after high-‎intensity physical exercise in rat, Eurasian Chem. Commun., 2022, 4.‎ [Crossref], [Google Scholar], [Publisher]  
‎[23] X. Guo, H. Li, H. Xu, S. Woo, H. Dong, F. Lu, A.J. Lange, C. Wu ,Glycolysis in the control of blood glucose homeostasis, Acta Pharm. Sin. B., 2012, 2, 358–367. [Crossref], [Google Scholar], [Publisher]  
‎[24] M.F. Oliver, Metabolic response during impending myocardial infarction. II. ‎Clinical implications., Circulation, 1972, 45, 491–500. [Crossref], [Google Scholar], [Publisher]  
‎[25] S. Cassidy, C. Thoma, D. Houghton, M.I. Trenell, High-intensity interval ‎training: a review of its impact on glucose control and cardiometabolic health, ‎Diabetologia, 2017, 60, 7–23. [Crossref], [Google Scholar], [Publisher]  
‎[26] E.A. Richter, W. Derave, J.F.P. Wojtaszewski, Glucose, exercise and insulin: ‎emerging concepts, J. Physiol., 2001, 535, 313–322. [Crossref], [Google Scholar], [Publisher]  ‎
‎[27] S.R. Bird, J.A. Hawley, Update on the effects of physical activity on insulin ‎sensitivity in humans, BMJ Open Sport Exerc. Med., 2017, 2, e000143. [Crossref], [Google Scholar], [Publisher]