1 Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia

2 Department of Biology, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Makassar 90245, Indonesia

3 Faculty of Medicine, Hasanuddin University, Makassar, Makassar 90245, Indonesia

4 Midwifery Study Program, Hasanuddin University, Makassar 90245, Indonesia

5 Department of Matematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia

6 Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar 90244, Indonesia

7 Department of Biology Education, Faculty of Teacher Training and Education, Universitas Puangrimaggalatung, Sengkang 90915, Indonesia


This study aims to know how to composite hydroxyapatite-collagen by freeze-drying method, and the characterization of hydroxyapatite-collagen composites using XRD, FTIR, and SEM. Hydroxyapatite nanocrystals are synthesized using the precipitation method by reacting CaO and (NH4)2HPO4 and the freeze-drying method in composite manufacturing by reacting hydroxyapatite nanocrystals with collagen. The results showed that hydroxyapatite nanocrystals can be composite with collagen using the freeze-drying method, and the results of characterization of XRD, FTIR, and SEM hydroxyapatite-collagen composites show the formation of chemical bonds between hydroxyapatite and collagen. The XRD spectrum of HAp-Collagen shows a peak at 2θ 10.45°, showing a physically formed composite. FTIR characterization shows the presence of absorption bands PO43- and OH- from HA, slight wavenumber shifts also occur in C-H, C-N, N-H, and C=O groups which are characteristic of collagen, this indicates that composites are formed physically. SEM characterization shows HAp is perfectly deposited into collagen molecules.

Graphical Abstract

Fabrication and analysis of nano-hydroxyapatite [Ca10(PO4)6(OH)2] composites with collagen derived from eggshells through freeze-drying


[1] M. Chandran, K. Brind’Amour, S. Fujiwara, Y-C. Ha, H. Tang, J-S. Hwang, J. Tinker, J.A. Eisman , Prevalence of osteoporosis and incidence of related fractures in developed economies in the Asia Pacific Region: a systematic review, Osteoporos Int., 2023, 34, 1037–1053. [Crossref], [Google Scholar], [Publisher]
[2] M. Sivakumar, T.S. Sampath Kumar, K.L. Shanta, R.K. Panduranga. Development of hydroxyapatite derived from Indian coral, J. Biomater., 1996, 17, 1709-1714. [Crossref], [Google Scholar], [Publisher]
[3] A). E. Garetta, T. Fernandez, S. Borros, J. Esteve, C. Colominas, L. Kempf, Synthesis of biocompatible surfaces by different techniques, J. Mat. Res. Soc. Symp. Proc, 2002, 724, N8.11.1-N8.11.6. [Crossref], [Google Scholar], [Publisher] b). R. Kareem, N. Bulut, O. Kaygili, Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, medical applications, and fabrication methods, J. Chem. Rev., 2024, 6, 1-26. [Crossref], [Pdf], [Publisher]
[4] a). C.D. Nascimento, Biomaterials applied to the bone healing process, Int. J. Morphology, 2007, 25, 839-846. [Google Scholar], [PDF] b). B. Khatri, A. Rajbhandari (Nyachhyon), Preparation, characterization and photocatalytic application of novel bismuth vanadate/hydroxyapatite composite, Adv. J. Chem. A., 2020, 789-799. [Crossref], [Google Scholar], [Publisher] c). A.A. Radhi, H. Aljudy, The impact of mixed NaOH and KOH mole fraction on mechanical performance of metakaolin based geopolymer material, J. Med. Chem. Sci., 2023, 6, 1120-1128. [Crossref], [Pdf], [Publisher] d) H.A. Ameer Radhi, M. Abdulaziz Ahmad, Biological test of porous geopolymer as a bone substitute, J. Med. Chem. Sci., 2023, 6, 710-719. [Crossref], [Google Scholar], [Publisher]
[5] S. Ahmed, M. Ahsan, Synthesis of Ca-hydroxyapatite bioceramic from egg shell and its characterization, Bangladesh J. Sci. Ind. Res., 2008, 43, 501-512. [Google Scholar], [Publisher]
[6] T.Q. Abd Alkareem, E.J. Waheed. Formation, characterization and antioxidant study of mixed ligand complexes derived from succinyl chloride, Chem. Methodol., 2022, 6, 914-928. [Crossref], [Pdf], [Publisher]
[7] A.E. Ahmed Tamer, W. Ling, Y. Manar, H. Maxwell, Biotechnological applications of eggshell: recent advances, J. Front. Bioeng. Biotechnol., 2021, 9. [Crossref], [Google Scholar], [Publisher]
[8] G. Ahlborn, B. W. Sheldon, Identifying the components in eggshell membrane responsible for reducing the heat resistance of bacterial pathogens, J. Food Prot., 2006, 69, 729-38. [Crossref], [Google Scholar], [Publisher]
[9] S.F. Bao, W. Windisch, M. Kirchgessner, Calcium bioavailability of different organic dietary source (citrate lactate, acetate, oyster-shell, eggshell, calcium phosphate), In J. Anim. Physiol. Anim. Nutr., 1997, 78, 154-160. [Crossref], [Google Scholar], [Publisher]
[10] H.C. Elliott, P.E. Mackie, R.A. Young, Monoclinic hydroxyapatite, Science, 1973, 180, 1055-1057. [Crossref], [Google Scholar], [Publisher]
[11] T.S.B. Nasaraju, D.E. Phebe, Some physico-chemical aspects of hydroxylapatite, J. Mat. Sci., 1966, 31, 1-21. [Crossref], [Google Scholar], [Publisher]
[12] W. Wang, K.W.K. Yeung, Bone grafts and Biomaterials Substitutes for Bone Defect Repair: a review, Bioact. Mater., 2017, 2, 224-247. [Crossref], [Google Scholar], [Publisher]
[13] T.T. Roberts, A.J. Rosenbaum, Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing, Organogenesis, Oct-Dec., 2012, 8, 114-124. [Crossref], [Google Scholar], [Publisher]
[14] N.A.S. Mohd Pu'ad, J. Alipal, H.Z. Abdullah, M.I. Idris, T.C. Lee. Synthesis of Eggshell Derived hydroxyapatite via chemical precipitation and calcination method, Materials Today: Proceedings, 2021, 42, 172-177. [Crossref], [Google Scholar], [Publisher]
[15] N.D Malau, F. Adinugraha. Synthesis of hydrokxyapatite based duck egg shells using precipitation method, J. Phys.: Conf. Ser., 2020, 1563, 012020. [Crossref], [Google Scholar], [Publisher]
[16] Albuquerque, C.G. Monica, I. Jimenez-Urbistondo, J. Santamaria-Gonzalez, CaO supported on mesoporous silicas as basic catalysts for transesterification reactions, Appl Catal A: Gen, 2008, 334, 35-43. [Crossref], [Google Scholar], [Publisher]
[17] M.C. Reis, M.F.B. Sousa, F. Alobaid, C.A. Bertran, Y. Wang, A two-fluid model for calcium carbonate precipitation in highly supersaturated solutions, Adv. Powder Technol., 2018, 29, 1571-1581. [Crossref], [Google Scholar], [Publisher]
[18] P. Agrinier, A. Deutsch, U. Scharer, I. Martinez, Fast back-reactions of shock-released CO2 from carbonates: an experimental approach, Geochim. Cosmochim. Acta., 2001, 65, 2615-2632. [Crossref], [Google Scholar], [Publisher]
[19] M.L. Granados, M.D. Poves, D.M. Alonso, R. Mariscal, F.C. Galisteo, T.R. Moreno, J. Santamaría, L.G. Fierro, Biodiesel from sunflower oil by using activated calcium oxide, Appl. Catal. B: Environ., 2007, 73, 317-326. [Crossref], [Google Scholar], [Publisher]
[20] R. Han, Y. Wang, S. Xing, C. Pang, Y. Hao, C. Song, Q. Liu, Progress in reducing calcination reaction temperature of calcium-looping CO2 capture technology: a critical review, J. Chem. Eng., 2022, 450, 137952.  [Crossref], [Google Scholar], [Publisher]
[21] K. Dahlan, F. Prasetyanti, Y.W. Sari, Synthesis of hydroxyapatite from eggshells using dry method, J. Biophysics, 2009, 5, 71-78. [Google Scholar]
[22] H. Pan, B.W. Darvell, Effect of carbonate on hydroxyapatite solubility, Crystal Growth & Amp; Design, 2010, 10, 845-850. [Crossref], [Google Scholar], [Publisher]
[23] N.A. Luchman, A.W.R. Megat, S.H.Z. Ariffin, N.S. Nasruddin, S.F. Lau, F.Yazid, Comparison between hydroxyapatite and polycaprolactone in inducing osteogenic differentiation and augmenting maxillary bone regeneration in rats, PeerJ., 2022, 10, e13356. [Crossref], [Google Scholar], [Publisher]
[24] M. Ozawa, S. Suzuki, Microstructural development of natural hydroxyapatite originated from fi sh-bone waste through heat treatment, J. Am. Ceram. Soc., 2002, 85, 1315-1317. [Crossref], [Google Scholar], [Publisher]
[25] R. Pallela, J. Venkatesan, S.K. Kim, Polymer assisted isolation of hydroxyapatite from Th unnus obesus bone, J. Ceram. Int., 2011, 37, 3489-3497. [Crossref], [Google Scholar], [Publisher]
[26] S. Kirubanandan, P.K. Sehgal, Regeneration of soft tissue using porous bovine collagen scaffold, J. Optoelectron. Biomed. Mate., 2010, 2. [Google Scholar], [PDF]
[27] X. Feng, Chemical and biochemical basis of cell-bone matrix interaction in health and disease, Curr Chem Biol., 2009, 3, 189-196. [Crossref], [Google Scholar], [Publisher]
[28] M.Z. Ichsan, Synthesis of collagen-hydroxyapatite composite macroporus as a bone graft candidate, Thesis, Department of Physics, Faculty of Science and Technology, Airlangga University: Surabaya., 2012 [Crossref]