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Introduction 

Cancer is one of the principal causes of 

morbidity and mortality worldwide. Cisplatin 

is considered a very effective chemotherapy 

used for the therapy of a wide range of 

malignancies such as bladder, breast, 

testicular, ovarian, prostate, lung, esophagus, 

and stomach cancers [1-4]. However, it has 

been reported that Cisplatin has toxic effects 

on multiple organs, especially the kidneys and 

the heart [5-7]. Acute renal injury is a severe 
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Cisplatin, a chemotherapy in various tumor therapies, has 
toxic effects on various organs, especially the kidneys. Several 
studies have been performed to decrease its adverse effects 
on renal tissue using selenium (Se). However, there is a 
limited range between selenium's therapeutic and harmful 
dosages. The current work was performed to compare the 
therapeutic role of the sublethal doses of selenium 
nanoparticles (Se NPs) (0.5, 2, and 5 mg/kg) in cisplatin-
induced renal toxicity. The experimental rats were divided 
into five groups. The control group (group I), group II 
(Cisplatin-treated group), group III (Cisplatin and 0.5 mg/kg 
Se NPs treated group), group IV (Cisplatin and 2 mg/kg Se 
NPs treated group), and group V (Cisplatin and 5 mg/kg Se 
NPs treated group). No statistical differences were observed 
in the serum urea and creatinine levels in groups I, III, and IV.  
Yet, their levels were statistically elevated in group V. The 
renal tissue injury was improved in group IV. However, mild 
glomerular and tubular changes were found in group III. In 
addition, renal cortical degeneration was observed in group 
V. These results were confirmed by the analysis of the area 
percent of COX2 and caspase-3 denoting that 2 mg/kg Se NPs 
represent the protective dose against acute Cisplatin renal 
injury. The current study suggests that Se NPs in a dose of 2 
mg/kg is beneficial in the treatment of the renal cortex 
against acute Cisplatin injury. Further research is 
recommended to clarify the long-term potential influences of 
Se NPs on renal toxicity. 
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clinical disorder associated with structural 

damage leading to kidney dysfunction. The 

elimination of waste products and acid-base 

balance are interrupted [8-10]. The 

pathogenesis of acute renal injury is attributed 

to the production of some inflammatory 

mediators and tubular cell apoptosis [11], 

resulting in acute tubular necrosis [12]. In 

addition, oxidative stress, vascular injury, 

arteriolar vasoconstriction, and stress of the 

endoplasmic reticulum are multiple molecular 

mechanisms associated with nephrotoxicity 

induced by Cisplatin. Reduced blood flow to the 

renal tissue is produced by elevated 

vasoconstriction and damage of the 

endothelium which leads to decreased 

vascular autoregulation. Increased 

constriction of the smooth muscle cells of the 

tubular blood vessels results in increased 

resistance to the vascular flow. Consequently, 

it will lead to a decrease the renal blood flow, 

renal tubular cell hypoxia, and reduced 

glomerular filtration rate leading to renal 

damage [13-14]. Cisplatin stimulates the 

overproduction of reactive oxygen species 

(ROS) and decreases the antioxidant defense 

systems such as glutathione (GSH) and system 

and superoxide dismutase (SOD). Cisplatin 

accumulates in the mitochondria leading to 

mitochondrial dysfunction and damage [15]. 

Necrotic damage induced by Cisplatin activates 

an inflammatory and immune response 

characterized by loss of organelles, cell 

swelling, and rupture of the plasma membrane 

[16]. 

Recent studies have been implemented to 

decrease the toxic properties of Cisplatin, using 

various drugs, to eliminate its renal toxicity. 

Selenium (Se) is a crucial micronutrient that is 

essential for several biochemical reactions. It 

has a vital role in normal body functions due to 

its antioxidant function, reduction of the 

oxidation of the lipid, and protection against 

DNA deterioration [17,18]. However, there is a 

limited range between selenium's harmful and 

therapeutic dosages. The toxic effects of 

selenium depend on its chemical structure, 

methylation, and excretion rates. Previous 

studies investigated the lethal doses of 

selenium and suggested that the oral average 

toxic dose of sodium selenite was 7 mg/kg in 

rats [19]. The molecular mechanism engaged 

in selenium toxicity comprises the interaction 

with glutathione, producing ROS, which leads 

to oxidative damage [20]. Therefore, Se 

nanoparticles (NPs) have been investigated to 

be utilized in various applications with lower 

toxicity and higher bioavailability due to better 

delivery and absorption [21]. Se NPs revealed 

better tissue penetration, and better delivery 

to the target tissues with gradual release [22]. 

However, multiple researches reported that 

the subtoxic doses of Se NPs produce multiple 

side effects [23,24]. Previous studies 

investigated the effects of multiple doses of Se 

NPs on the rats' health status and acute renal 

injury [18,19]. Consequently, the nanotoxicity 

of Se NPs needs careful consideration. Limited 

information was collected about the influence 

of several doses of Se NPs on renal cortical 

injury. Therefore, the present work was 

performed to study and compare the 

therapeutic effects of the sublethal doses of Se 

NPs in Cisplatin-induced renal toxicity. 

Materials and methods 

Experimental animals 

Fifty adult Sprague Dawley male albino rats 

were used in the experiment. The weights of 

the rats ranged from 200 to 250 g each. The 

rats were given 2 weeks for an acclimatization 

period before the start of the study. The 

experimental animals had access to food and 

water ad libitum at room temperature and 

were handled according to the international 

guidelines for the care and use of laboratory 

animals. The experiment proposal was 

approved by the Committee of Research Ethics, 

Deanship of Scientific Research, Qassim 

University. The rats were divided equally into 

five groups (ten rats in each group) as follows: 
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Group I (the control group): The rats 

received 0.5 mL saline intraperitoneal (I.P.) 

weekly. 

Group II received Cisplatin (EIMC, Cairo, 

Egypt), a single dose on day one [25].  

Group III received 10 mg/kg I.P. Cisplatin as 

a single dose on day one and gastric gavage of 

0.5 mg/kg/day Se NPs dispersed in distilled 

water, for 21 days (prepared in suspension 

form at a concentration of 0.4 mg/mL, 99.99% 

purity, size: <50 nm, Nano-Tech, Cairo, Egypt) 

[19,26].  

Group IV received 10 mg/kg I.P. Cisplatin as 

a single dose on day one and gastric gavage of 

2 mg/kg/day Se NPs for 21 days [26].  

Group V received 10 mg/kg I.P. Cisplatin as 

a single dose on day one and gastric gavage of 

5 mg/kg/day Se NPs for 21 days [19].  

At the end of the experiment, blood samples 

were drawn from the retro-orbital plexus with 

capillary glass tubes for urea and creatinine 

analysis. The rats received 40 mg/kg 

pentobarbital I.P. for euthanasia. The kidneys 

of each rat were dissected and fixed in 10% 

formaldehyde for histological and 

immunohistochemical studies.  

Light microscopic study    

The liver specimens were processed for 

paraffin blocks and then prepared for light 

microscopic studies. The specimens were 

stained with Hematoxylin and Eosin (H & E) 

stain to examine the changes in the histological 

structure, Masson’s trichrome stain to identify 

the deposition of collagen fibers, and Periodic 

acid-Schiff (PAS) stain to reveal the 

polysaccharides in the renal cortical tissue. 

Immunohistochemical study 

The following primary antibodies were 

applied: 

Caspase-3 antibody: The primary antisera 

were diluted in antibody diluents (1:1000) 

(TA-125-UD, Lab vision, Goteborg, Sweden). 

An AEC (3-amino-9-ethyl carbazole) was used 

to demonstrate the peroxidase activity with 

the substrate kit (TA- 004HAC, Lab Vision, 

Goteborg, Sweden). Brown discoloration of the 

cytoplasm demonstrated a positive reaction in 

the apoptotic cells. 

Cyclooxygenase 2 (COX2) antibody: The 

primary antisera were diluted in antibody 

diluents (1:1000) (160106, Cayman Chemical 

Corp., Ann Arbor, MI). The brown discoloration 

of the cytoplasm denoted a positive reaction to 

the inflammatory mediator COX2. 

Histomorphometric measurements 

The following parameters were measured, 

using a magnification of 400, in 10 non-

overlapping fields: 

1. A total of 20 glomeruli with visible 

vascular and urine poles were examined for 

each rat. The glomerular, Bowman’s capsule, 

and Bowman’s space areas were measured. 

2. The area percent of positive reaction to 

Masson’s Trichrome stain, PAS stain, caspase 3, 

and Cox2 positive reactions in the renal cortex 

was measured. An independent observer was 

conducting the measurements using the image 

analyzer computer system (V3.8), Leica LAS, 

(Switzerland). 

Statistical analysis 

The results of the current work were analyzed 

as mean ± SD using the “SPSS 22” (Inc., Chicago, 

IL, USA) program. One-way ANOVA was 

performed for the comparison between the 

quantitative variables.  The differences were 

considered significant when the p-value was 

less than  0.05. 

Results 

Biochemical results 

The animal groups that received 0.5 and 2 mg 

Se NPs after Cisplatin injection (groups III and 

IV) revealed a normal range of serum urea and 

creatinine levels, which represented a 

significant decrease in their levels compared 
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with the Cisplatin group (group II). The 

Cisplatin group (group II) and the group 

treated with 5 mg Se NPs (group V) had a 

significant rise in the serum urea and 

creatinine levels, compared with the control 

group (group I), (P < 0.05) (Table 1, Figure 1).  

TABLE 1 The mean values ± SD of serum urea and creatinine 

 Control Cisplatin 
0.5 mg of Se 

NPs 

2 mg of Se 

NPs 

5 mg of Se 

NPs 

Urea (mg/dL) 
33.83 ± 

1.18 

1.66 ±  80.87
a 

b .80± 033.98  b1.04 ± 33.90  a2.62 ± 51.16  

Creatinine 

(mg/dL) 
0.33 ± 0.03 a .13± 01.93  b ± 0.020.34  b.02 ± 00.33  a.21 ± 01.83  

a statistically significant with the control group, b statistically significant with the Cisplatin group 

 

FIGURE 1 The mean values ± SD of serum urea and creatinine 

Light microscopic examination   

The sections of the kidney tissue of the control 

group stained with hematoxylin and eosin 

(group I) revealed normal renal architecture. 

The tufts of the glomerular capillaries were 

enclosed by Bowman’s capsule lined with 

simple squamous epithelium. The Bowman’s 

spaces of the glomeruli were narrow. The 

proximal convoluted tubules were lined with 

pyramidal epithelium and they have narrow 

lumen, while the distal convoluted tubules 

were lined with low cuboidal cells. The cells 

contain central rounded nuclei with a wide 

lumen of the tubules (Figure 2A). Group II 

(Cisplatin group) revealed massive 

degeneration of the renal cortex. The glomeruli 

were shrunken with wide Bowman’s space. 

The proximal and distal convoluted tubules 

were dilated with exfoliated tubular cells. 

Some extravasated red blood cells were shown 

outside the congested blood vessels (Figure 

2B). Groups III and IV (0.5 and 2 mg Se NPs 

treated group) showed normal renal 

architecture consisting of glomerular capillary 

tufts and narrow Bowman’s space. and normal 

proximal and distal convoluted tubules 

revealed a normal pattern. Some tubular cells 

show pyknotic nuclei in group III, while group 

IV exhibited normal tubules (Figures 2C and 

D). Group V (5 mg Se NPs) revealed shrunken 

necrotic glomeruli.  Bowman’s spaces were 

seen wide with exfoliated tubular cells and 

pyknotic nuclei (Figure 2E). 
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FIGURE 2 Photomicrographs of the renal cortex A): Group I (control) shows normal renal architecture with 

glomerular capillary tufts (G). They are surrounded by Bowman’s capsule lined with simple squamous 

epithelium (arrowhead). Bowman’s spaces (BS) are narrow. The proximal convoluted tubules (P) have a 

narrow lumen and are lined with pyramidal epithelium. The distal convoluted tubules (D) have a narrow 

lumen and are lined with low cuboidal cells that have central rounded nuclei. B) Group II (Cisplatin) shows 

massive degeneration of the renal cortex with shrunken glomeruli (G) and wide Bowman’s space (BS). The 

tubules are dilated (D), and exfoliated tubular cells (T). The blood vessels are congested (C) with 

extravasated red blood cells (E). C) Groups III and IV (0.5 and 2 mg/kg Se NPs) show normal renal 

architecture consisting of glomerular capillary tufts (G). Bowman’s spaces (BS) are narrow. The proximal 

(P) and distal tubules (D) are normal. Some tubular cells show pyknotic nuclei (arrows) and normal tubules 

(T). E) Group V (5 mg/kg Se NPs) shows shrunken necrotic glomeruli (G). Bowman’s spaces (BS) are wide 

with exfoliated tubular cells (T) with pyknotic nuclei (arrows). (H & E x 400) 
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The specimens of the control group stained 
with Masson’s trichrome stain showed 
minimal collagen fibers around Bowman’s 
capsule (Figure 3 A). Group II (Cisplatin group) 
and group V (5 mg Se NPs treated group) 
revealed a large amount of collagen fibers 
surrounding the Bowman’s capsule and 
between the renal tubules (Figure 3 B and E). 
Groups III and IV (0.5 and 2 mg Se NPs treated 
group) showed few collagen fibers 
surrounding the Bowman’s capsule and 
between the renal tubules (Figure 3 C and D). 
Group I (control), stained with PAS stain, 

showed a strong positive reaction of the 
basement membrane of Bowman’s capsule and 
the basal membrane of the renal tubules 
(Figure 4 A). Groups II and V (Cisplatin group) 
and (5 mg Se NPs treated group) showed faint 
PAS reaction around Bowman’s capsule and 
the renal tubules (Figure 4 B and E). Groups III 
and IV (0.5 and 2 mg Se NPs) revealed a 
positive PAS reaction of the basement 
membrane of Bowman’s capsule and the basal 
membrane of the renal tubules (Figure 4 C and 
D). 

 

 

 
FIGURE 3 Photomicrographs of the renal cortex A): Group I (control) shows minimal collagen fibers around 

Bowman’s capsule (arrows).  B and E) Group II (Cisplatin) and group V (5 mg/kg Se NPs) show a large 

amount of collagen fibers around Bowman’s capsule and between the renal tubules (arrows). C and D) 

Groups III and IV (0.5 and 2 mg/kg Se NPs) show few collagen fibers around Bowman’s capsule and 

between the renal tubules (arrows).  (Masson’s trichrome x 400) 
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FIGURE 4  Photomicrographs of the renal cortex A): Group I (control) shows a strong positive PAS reaction 

of the basement membrane of Bowman’s capsule and the basal membrane of the renal tubules (arrows) B 

and E) Group II (Cisplatin) and group V (5 mg/kg Se NPs) shows faint PAS reaction around Bowman’s 

capsule and the renal tubules (arrows). C and D) Groups III (0.5 mg/kg Se NPs) and IV (2 mg/kg Se NPs) 

show a positive PAS reaction of the basement membrane of Bowman’s capsule and the basal membrane of 

the renal tubules (arrows). (PAS x 400) 

Immunohistochemical studies 

Brown discoloration of the cytoplasm of the 

cells of the glomeruli and the renal tubules was 

shown as a positive reaction to caspase 3. 

Group I (control) showed a faint reaction. 

Group II and V (Cisplatin and 5 mg Se NPs) 

revealed strong positive caspase 3 reactions. 

Groups III and IV (0.5 and 2 mg Se NPs) showed 

mild positive caspase 3 reactions inside the 

glomeruli (Figure 5 A-E). Group I (control) and 

IV (2 mg Se NPs) showed a negative COX 2 
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reaction. Group II (Cisplatin) and group V (5 

mg Se NPs) revealed strong positive COX 2 

reactions as brown discoloration of the 

cytoplasm inside the glomeruli and the renal 

tubules. Group III (0.5 mg Se NPs) showed mild 

positive COX 2 reaction inside the glomeruli 

(Figure 6 A-E). 

 

 

FIGURE 5 Photomicrograph of the renal cortex A): Group I (control) shows a faint caspase 3 reaction. B and 

E) Group II (Cisplatin) and group V (5 mg/kg Se NPs) show strong positive caspase 3 reactions as brown 

discoloration of the cytoplasm inside the glomeruli and the renal tubules. C and D) Groups III (0.5 mg/kg 

Se NPs) and IV (2 mg/kg Se NPs) show mild positive caspase 3 reactions inside the glomeruli. (Caspase 3 x 

400) 
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FIGURE 6 Photomicrograph of the renal cortex A and D): Group I (control) and IV (2 mg/kg Se NPs) show 

a negative COX 2 reaction. B and E) Group II (Cisplatin) and group V (5 mg/kg Se NPs) show strong positive 

COX 2 reactions as brown discoloration of the cytoplasm inside the glomeruli and the renal tubules. C) 

Group III (0.5 mg/kg Se NPs) shows mild positive COX 2 reaction inside the glomeruli (COX 2 x 400) 

Histomorphometric analysis  

Histomorphometric measurements revealed 

significantly shrunken glomeruli in all the 

groups compared with group I, the control 

group, with the lowest level in group V (5 mg 

Se NPs). Widened Bowman’s capsules were 

revealed in groups II, III, and V (Cisplatin, 0.5 

and 5 mg Se NPs groups) compared with group 

I, the control group. No significant difference, 

in Bowman’s capsule areas, was shown 

between group IV (2 mg Se NPs group) and 

group I. 

Significant dilatation in Bowman's spaces 

was revealed in groups II, III, and V (Cisplatin, 

0.5 and 5 mg Se NPs groups) compared with 

group I with no statistically significant 

difference between group IV (2 mg Se NPs 

group) and group I (Table 2, Figure 7). 
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TABLE 2 The mean values ± SD of the morphological characteristics of the renal cortex 

 
Control Cisplatin 0.5 mg of Se NPs 2 mg of Se NPs 5 mg of Se NPs 

)2G area (µm 
6906.3 ± 

68.72 
a ± 66.9 5765.9 a, b ± 44.31 6313.6 a, b± 57.416803.6  a ± 52.95766.9  

)2(µmBC area  
8327.8 ± 

43.25 

 ± 53.99 9525.6
a 

a, b ± 92.46 8586.8 b ± 54.288315.8  a ± 52.89494  

)2BS area (µm 1537.1 ± 8.43 
 ± 41.73 3614.9

a 
a, b 98.04± 1965.4  b ± 18.531541.7  

a,  ± 96.953397.6 
b 

G area (Glomerular area), BC area (Bowman’s capsule area), BS area (Bowman’s space area) 
 a statistically significant with the control group, b statistically significant with the Cisplatin group 

 

FIGURE 7 The mean values ± SD of the morphological characteristics of the renal cortex 

Groups II, III, and V (Cisplatin, 0.5 and 5 mg 

Se NPs groups) had significantly higher values 

of collagen fibers, caspase-3, and COX2 

reactions area percent, than the control group. 

No statistically significant difference, in these 

parameters, was observed between group IV 

(2 mg Se NPs group) and the control group. The 

PAS reaction area percent was insignificantly 

reduced in all the groups compared with group 

I with no statistically significant difference 

between group V (5 mg Se NPs group) and 

group II (Cisplatin group) (Table 3, Figure 8). 

 

TABLE 3 The mean values ± SD of collagen fibers, PAS, caspase-3, and Cox2 reactions area percent 

 Control Cisplatin 0.5 mg of Se NPs 2 mg of Se NPs 5 mg of Se NPs 

Collagen fibers 0.02 ± 0.01 a 7.81 ± 0.37 a, b 1.51 ± 0.22 b0.02 ± 0.01 a, b 6.77 ± 0.50 

PAS 0.94 ± 0.03 a 0.04 ± 0.01 a, b 0.62 ± 0.02 a, b 0.90 ± 0.04 a 0.05 ± 0.01 

Caspase 3 0.52 ± 0.03 a 7.97 ± 0.33 a, b 1.49 ± 0.24 b0.59 ± 0.05  a, b7.13 ± 0.40  

Cox2 0.44 ± 0.07 a 12.41 ± 0.67 a, b 4.56 ± 0.38 b0.52 ± 0.04  a11.72 ± 1.06  

a statistically significant with the control group, b statistically significant with the Cisplatin group 
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FIGURE 8 The mean values ± SD of collagen fibers, PAS, caspase-3, and Cox2 reactions area 

percent  

Discussion 

Nephrotoxicity, induced by Cisplatin, resulted 

in acute renal injury which is a hazardous 

complication, particularly in patients treated 

with chemotherapy [27]. The present work 

demonstrated that Se NPs ameliorated the 

Cisplatin mediated nephrotoxicity in the 

experimental animals through the reduction of 

inflammation and apoptosis in the renal tissue 

of the rats subjected to Cisplatin-induced 

nephrotoxicity. These results confirmed the 

renal protective effects of Se NPs against renal 

injury. 

The appropriate and adequate form of Se is 

still under debate. With the advance of the 

production of the promising Se NPs, special 

considerations should be carefully 

investigated, concerning the toxicity term. A 

positive antioxidant effect of Se NPs was 

proved in several studies [28,29]. 

These findings are beneficial as Cisplatin 

deposition in the renal tubules was reported to 

produce ROS which attacks the endogenous 

DNA and triggers signaling pathways that 

worsen its damaging effects [30]. According to 

the previous studies, Se NPs possess several 

physiochemical characteristics, such as 

appropriate bioavailability, reduced toxicity, 

and better therapeutic potentials compared 

with the Se ions [31]. Therefore, Se NPs have 

been documented as a hopeful tool for the 

therapy and pre-clinical and clinical research 

in drug delivery, treatment of diabetes, 

neurological complications, and cancer 

therapy [32]. 

Se NPs were proven to have several 

pharmacological potentials and positive 

therapeutic implications in the treatment of 

renal injuries induced by multiple factors 

including the nephrotoxic Cisplatin [33]. In 

agreement with these previous reports, the 

current study presented essential evidence 

that Se NPs revealed considerable therapeutic 

effects against Cisplatin-induced renal toxicity. 

The present study evaluated the Se NPs 

administration from the non-toxic (0.5 mg/kg) 

to the toxic dose (5 mg/kg). The biochemical 

status, the histopathological alterations of the 

renal tissue, the immunohistochemical 

reactions to the inflammatory and apoptotic 

factors, and the histomorphometric analysis 

have been assessed. The biochemical analysis 

has been used to assess the functional injury of 

the kidney. Plasma urea and creatinine levels 

were reduced to their normal levels in the 
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groups that received 0.5 and 2 mg/kg Se NPs 

denoting the improvement of the kidney 

function tests and the efficient therapeutic role 

of these doses in renal toxicity. However, the 

group treated with a higher dose, 5 mg/kg Se 

NPs, revealed a significant elevation in the 

serum urea and creatinine levels with the 

control group, indicating dysfunction or 

impaired kidney function. These findings were 

confirmed by the histopathological studies of 

the renal tissues. 

The present study revealed the toxic effects 

of Cisplatin in the form of massive 

degeneration of the renal cortex with shrunken 

glomeruli and wide Bowman’s space with 

tubular necrosis. Massive collagen fiber 

deposition was detected inside the glomeruli 

and among the renal tubules, with depletion of 

the polysaccharides from the glomeruli and 

renal tubules' basement membranes. In 

addition, nephrotoxicity was demonstrated by 

a significant increase in the fibrosis area 

percent, immune reaction to the inflammatory 

factor; COX 2, and the apoptotic factor; caspase 

3. 0.5 and 2 mg/kg doses of Se NPs showed 

marked improvement in the previous 

parameters. 

The dose of 2 mg/kg Se NPs demonstrated 

normal kidney function tests and treatment of 

the pathological alterations induced by 

Cisplatin. In contrast, the dose of 5 mg/kg Se 

NPs showed renal dysfunction due to higher 

levels of serum urea and creatinine and 

massive degeneration and necrosis of the renal 

cortex. One of the healing mechanisms of Se 

NPs in treating renal toxicity is oxidative stress 

elimination. Previous studies demonstrated 

that Se NPs affect the antioxidant enzyme 

levels in a dose-dependent manner [34]. Se NPs 

at a dose of 0.1 and 0.2 mg/kg were proven to 

ameliorate the adverse effects of oxidative 

stress [35]. Urbankova et al. [19] detected a 

significant decrease in the level of superoxide 

dismutase (SOD), the antioxidant enzyme, in 

the rat group treated with 5 mg/kg Se NPs 

which is in agreement with the results of the 

present work. In addition, these results are 

supported by He et al. [36] who recorded tissue 

damage from the nonlethal doses of Se NPs 

from 0.2 to 8 mg/kg. Moreover, Hadrup et al. 

[37], have observed no histological changes in 

the tissue of the rats supplemented with Se NPs 

at a dose of 0.05, 0.5, and 4 mg/kg. Se NPs were 

reported to diminish the inflammatory 

response induced by the cytokines, collagens, 

fibrogenesis, and adhesive molecules, through 

the inhibition of the nuclear factor kappa beta 

(NF-κB). 

These dramatic decreases in the 

inflammatory cascades promote the anti-

inflammatory, anti-fibrotic, and antioxidant 

potentials of Se NPs [38,39]. In the present 

work, the animals treated with Cisplatin 

exhibited marked renal damage due to massive 

inflammation. This is evidenced by the high 

expression of COX 2 (prostaglandin H 

synthase) in this group, and low expression in 

the groups treated with Se NPs in a dose of 0.5 

and 2 mg/kg. However, COX 2 was highly 

expressed in the renal cortex of the rats treated 

with 5 mg/kg Se NPs denoting severe 

inflammation as detected by Kirkby et al. [40].   

Conclusion 

The present work detected the protective and 

therapeutic effects of Se NPs against Cisplatin 

nephrotoxicity. These nanoparticles have 

nephroprotective effects such as reduced 

inflammation, oxidative stress damage, and 

apoptosis which are dose-dependent. The 

study observed that 2 mg/kg Se NPs is the ideal 

dose for the treatment of nephrotoxicity, while 

5 mg/kg Se NPs produced marked renal 

inflammation, degeneration, and apoptosis. 
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