Document Type : Original Research Article


1 Clinical Microbiology Study Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

2 Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo Public Academic Hospital, Surabaya, Indonesia

3 Department of Internal Medicine, Faculty of of Medicine, Universitas Airlangga – Dr. Soetomo Public Academic Hospital, Surabaya, Indonesia


Polymicrobial biofilms, consisting of Pseudomonas aeruginosa and Candida albicans, pose a significant challenge in the field of microbiology due to their antimicrobial resistance. This study aims to investigate the potential effects of combined therapy involving meropenem and fluconazole on polymicrobial biofilms formed by these two species. Employing a true experimental laboratory design with a post-test-only control group, 32 stored clinical isolates, including meropenem-susceptible Pseudomonas aeruginosa and fluconazole-susceptible Candida albicans, were randomly selected. Polymicrobial biofilms of Pseudomonas aeruginosa and Candida albicans were established using a microtiter plate biofilm assay. After 24-hour exposure to meropenem, fluconazole, or a combination of meropenem and fluconazole, the biofilms formed were stained with 0.1% crystal violet. Optical density (OD) measurements were obtained using a spectrophotometer (ELISA reader). Data analysis using parametric ANOVA revealed significant differences (p < 0.05) in the statistical test results. Subsequent Post Hoc Test Least Significant Difference (LSD) analysis demonstrated no significant differences (p > 0.05) in the group treated with monotherapy of meropenem and fluconazole, while a significant difference (p < 0.05) was observed in the group treated with the combination therapy. The decline in optical density observed in this study could be attributed to a reduction in the extracellular matrix of the biofilm, a decline in the number of viable microbial cells, which subsequently reduces the production of the biofilm matrix, or a combination of both factors.

Graphical Abstract

Effect of meropenem and fluconazole combination therapy on polymicrobial biofilms (Pseudomonas aeruginosa and candida albicans): an in vitro study


Main Subjects

[1] (a) F. Alam, D. Catlow, A. Di Maio, J.M. Blair, R.A. Hall, Candida albicans enhances meropenem ‎tolerance of Pseudomonas aeruginosa in a dual-species biofilm, J. Antimicrob. Chemother., 2020, 75, 925. ‎[Crossref], [Google Scholar], [Publisher], (b) J. Ahmed, M. Sallau, O.R. Iyun, H. Ibrahim,  Recent advances in isolation and antimicrobial efficacy of selected strychnos species: a mini review, Chem. Rev., 2022, 4, 15-24. ‎[Crossref], [Google Scholar], [Publisher], (c) A. Mohammed Alkherraz, K.M. Elsherif, A. El-Dali, N.A. Blayblo, M. Sasi, Thermodynamic, equilibrium, and kinetic studies of safranin adsorption onto carpobrotus edulis, Journal of Medicinal and Nanomaterials Chemistry, 2022, 4, 118-131. ‎[Crossref], [Google Scholar], [Publisher], (d) S. Sangy, S.F. Miryousefiata, The effects of physical exercise on the immune system, Eurasian J. Sci. Technol., 2021, 1, 252-257. ‎[Crossref], [Pdf], [Publisher], (e)  F. Ugbe, G. Shallangwa, A. Uzairu, I. Abdulkadir, A 2-D QSAR modeling, molecular docking study and design of 2-arylbenzimidazole derivatives as novel leishmania inhibitors: a molecular dynamics study, Adv. J. Chem. A, 2023, 6, 50-64. ‎[Crossref], [Google Scholar], [Publisher], (f) F.I. Ahmadi, R. Fathollahi, D. Dastan, Phytochemical constituents and biological properties of scutellaria condensata subsp. Pycnotricha, Appl. Organomet. Chem., 2022, 2, 119-128. ‎[Crossref], [Google Scholar], [Publisher], (g) F. Akbarnejad, Dermatology benefits of punica granatum: a review of the potential benefits of punica granatum in skin disorders, Asian J. Green Chem., 2023, 7, 208-222. ‎[Crossref], [Pdf], [Publisher], (h) O. Olaleye, A. Oladipupo, B. Oyawaluja, H. Coker, Chemical composition, antioxidative and antimicrobial activities of different extracts of the leaves of parquetina nigrescens (Asclepiadaceae), Prog. Chem. Biochem. Res., 2021, 4, 359-371. ‎[Crossref], [Google Scholar], [Publisher], (i) A. Ogbuagu, C. Maduka, I. Okerulu, C. Onyema, C. Onyeizugbe, U. Emezie, Comparative phytochemical, nutritional and antimicrobial screening of the seed, leaf and root of Vigna Subterranea, Prog. Chem. Biochem. Res., 1999, 5, 182-195. ‎[Crossref], [Pdf], [Publisher]
[2] W.H. Tay, K.K.L. Chong, K.A. Kline, Polymicrobial–host interactions during infection, J. mol. Biol., 2016, 428, 3355. ‎[Crossref], [Google Scholar], [Publisher]
[3] M. Rupp, S. Kern, T. Weber, T. D. Menges, R. Schnettler, C. Heiß, V. Alt, Polymicrobial ‎infections and microbial patterns in infected nonunions–a descriptive analysis of 42 cases, ‎BMC Infect. Dis., 2020, 20, 1. ‎[Crossref], [Google Scholar], [Publisher]  
[4] S. Hattab, A.M. Dagher, R.T. Wheeler, Pseudomonas synergizes with fluconazole against ‎Candida during treatment of polymicrobial infection, Infect. Immun., 2022, ‎‎90, e00626. ‎[Crossref], [Google Scholar], [Publisher]
[5] D.K. Furtuna, K. Debora, E.B. Wasito, Antimicrobial susceptibility and the pattern of a ‎biofilm-forming pair of organisms from patients treated in intensive care units in Dr. ‎Soetomo General Hospital, Indonesia, Bali Med. J., 2019, 8, 51. ‎‎[Crossref], [Google Scholar]
[6] M. Wahjudi, S. S. Widodo, I.B.M. Artadana, Y. Antonius, The character of PA3235 virulence ‎factors of Pseudomonas aeruginosa PAO1–a preliminary study, Bali Med. J., 2023, ‎‎12, 1368. [Crossref], [Google Scholar], [Publisher]‎
[7] I.M.A.S. Putra, N.N.W. Udayani, I.M.Y. Winatra, The effect of giving extract of Giwang ‎ferns (Euphorbia milii) cactus leaves on the number of fibroblast white rats burn infected ‎with Pseudomonas aeruginosa, Bali Med. J., 2023, 12, 431. ‎‎[Crossref], [Google Scholar], [Publisher]
[8] X. Kostoulias, G.L. Murray, G.M. Cerqueira, J.B. Kong, F. Bantun, E. Mylonakis, C. A. Khoo, ‎ A.Y. Peleg, Impact of a cross-kingdom signaling molecule of Candida albicans on ‎acinetobacter baumannii physiology, Antimicrob Agents Chemother, 2016, ‎‎60, 161. ‎[Crossref], [Google Scholar], [Publisher]
[9] R.M. Vashvaei, Z. Sepehri, M. Jahantigh, F. Javadian, Study the effect of ethanol extract of ‎Achillea, green tea and Ajowan on Pseudomonas aeruginosa, Int. J. Adv. Biol. Biom. Res., 2015, ‎‎3, 145. [Google Scholar], [Publisher] ‎
[10] A. Febriana, A.D.W. Widodo, M.V. Arfijanto, Prevalence and susceptibility profile of ‎carbapenem-resistant pseudomonas aeruginosa (CRPA) at Dr. Soetomo Public Hospital, ‎Surabaya, from January to December 2021, Bali Med. J., 2023, 12, 571. ‎‎[Crossref], [Google Scholar], [Publisher]
[11] S. Bhardwaj, S. Bhatia, S. Singh, F. Franco Jr, Growing emergence of drug-resistant ‎Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A ‎critical review, Iran. J. Basic Med. Sci., 2021, 24, 699. ‎‎[Crossref], [Google Scholar], [Publisher]
[12] S. Saha, K.M. Devi, S. Damrolien, K.S. Devi, K.T. Sharma, Biofilm production and its ‎correlation with antibiotic resistance pattern among clinical isolates of Pseudomonas ‎aeruginosa in a tertiary care hospital in north-east India, Int. J. Adv. Med., 2018, 5, 964. ‎ [Google Scholar], [Publisher]
[13] N.S. Turkie, S.F. Hameed, Determination of fuconazole using flow injection analysis and ‎Turbidity Measurement by a Homemade NAG-4SX3-3D Analyzer, Asian J. Green Chem., 2022, 6, 255. ‎[Crossref], [Google Scholar], [Publisher]
[14] G.M. Pacifici, Clinical pharmacology of fluconazole in neonates: effects and ‎pharmacokinetics, Int. J. Pediatr., 2016, 4, 1475. ‎[Crossref], [Google Scholar], [Publisher]‎
[15] R. Kemenkes, Keputusan Menteri Kesehatan Republik Indonesia Nomor ‎HK.01.07/MENKES/6477/2021 tentang daftar obat esensial nasional, 2021. [Google Scholar]
[16] C. Sasse, N. Dunkel, T. Schäfer, S. Schneider, F. Dierolf, K. Ohlsen, J. Morschhäuser, The ‎stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in ‎Candida albicans, Mol. Microbiol., 2012, 86, 539. ‎[Crossref], [Google Scholar], [Publisher]
[17] G. Ramadhan, P Hanafi, R. Sulistiorini, Perbandingan Daya Hambat Flukonazol dengan ‎Mikonazol terhadap Jamur Candida albicans secara In Vitro, In PROSIDING SEMINAR NASIONAL & INTERNASIONAL, 2017, 1. [Google Scholar], [Publisher]
[18] R.A. Mahdy, W.M. Nada, M.M. Wageh, Topical amphoteriin B and subconjunctival injection ‎of fluconazole (combination therapy) versus topical amphotericin B (monotherapy) in ‎treatment of keratomycosis, J. ocul. Pharmacol. Ther., 2010, ‎‎26, 281. ‎[Crossref], [Google Scholar], [Publisher]
[19] I. Syaiful, A.D.W. Widodo, P.D. Endraswari, L. Alimsardjono, B. Utomo, M.V. Arfijanto, The ‎association between biofilm formation ability and antibiotic resistance phenotype in clinical ‎isolates of gram-negative bacteria: a cross-sectional study, Bali Med. J., 2023, ‎‎12, 1014. [Crossref], [Google Scholar], [Publisher]‎
[20] Y.C. Wang, S.C. Kuo, Y.S. Yang, Y.T. Lee, C.-H. Chiu, M.F. Chuang, J.C. Lin, F.Y. Chang, ‎T.L. Chen, Individual or combined effects of meropenem, imipenem, sulbactam, colistin, and ‎tigecycline on biofilm-embedded acinetobacter baumannii and biofilm architecture, ‎ Antimicrob. Agents Chemother., 2016, 60, 4670. ‎[Crossref], [Google Scholar], [Publisher]‎
[21] J. Haagensen, D. Verotta, L. Huang, J. Engel, A.M. Spormann, K. Yang, Spatiotemporal ‎pharmacodynamics of meropenem-and tobramycin-treated Pseudomonas aeruginosa ‎biofilms, Journal of Antimicrobial Chemotherapy, 2017, 72, 3357. ‎ ‎[Crossref], [Google Scholar], [Publisher]
[22] A. Ribera, E. Benavent, C. El-Haj, J. Gomez-Junyent, F. Tubau, R. Rigo-Bonnin, J. Ariza, ‎O. Murillo, Comparative antibiofilm efficacy of meropenem alone and in combination with colistin ‎in an in vitro pharmacodynamic model by extended-spectrum-β-lactamase-producing ‎Klebsiella pneumoniae, Antimicrob. Agents Chemother., 2019, 63, 940. [Crossref], [Google Scholar], [Publisher]‎
[23] Y. Uemura, L. Qin, K. Gotoh, H. Watanabe, K. Ohta, K.-i. Nakamura, Comparison study of ‎single and concurrent administrations of carbapenem, new quinolone, and macrolide against ‎in vitro nontypeable Haemophilus influenzae mature biofilms, J Infect. Chem., 2013, 19, 902 ‎[Crossref], [Google Scholar], [Publisher]
[24] P. Chen, A.K. Seth, J.J. Abercrombie, T.A. Mustoe, K.P. Leung, Activity of imipenem against ‎Klebsiella pneumoniae biofilms in vitro and in vivo, Antimicrob. Agents Chemother., 2014, 58, 1208. ‎[Crossref], [Google Scholar], [Publisher]
[25] H. Mulcahy, L. Charron-Mazenod, S. Lewenza, Extracellular DNA chelates cations and induces ‎antibiotic resistance in Pseudomonas aeruginosa biofilms, PLoS Pathogens, 2008, ‎‎4, e1000213 ‎[Crossref], [Google Scholar], [Publisher]
[26] A. Ghafoor, I.D. Hay, B.H. Rehm, Role of exopolysaccharides in pseudomonas aeruginosa ‎biofilm formation and architecture, Appl. Environ. Microbiolo., 2011, ‎‎77, 5238. [Crossref], [Google Scholar], [Publisher]‎
[27] J.J. Sidrim, C.E. Teixeira, R.A. Cordeiro, R. S. Brilhante, D.S. Castelo-Branco, S.P. Bandeira, L.P. Alencar, J.S. Oliveira, A.J. Monteiro, J. L. Moreira, β-Lactam antibiotics and vancomycin ‎inhibit the growth of planktonic and biofilm Candida spp.: An additional benefit of antibiotic-‎lock therapy?, Int. J. Antimicrob. Agents, 2015, 45, 420. ‎‎[Crossref], [Google Scholar], [Publisher]
[28] P. Uppuluri, A. Srinivasan, A. Ramasubramanian, J.L. Lopez-Ribot, Effects of fluconazole, ‎amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and ‎on biofilm dispersion, Antimicrob. Agents Chemother., 2011, 55, 3591. ‎[Crossref], [Google Scholar], [Publisher]
[29] R.C. Bassi, M.F. Boriollo, Amphotericin B, fluconazole, and nystatin as development ‎inhibitors of Candida albicans biofilms on a dental prosthesis reline material: Analytical ‎models in vitro, J. Prosthet. Dent., 2022, 127, 320. ‎ ‎[Crossref], [Google Scholar], [Publisher]