[1] (a) F. Alam, D. Catlow, A. Di Maio, J.M. Blair, R.A. Hall, Candida albicans enhances meropenem tolerance of Pseudomonas aeruginosa in a dual-species biofilm,
J. Antimicrob. Chemother.,
2020,
75, 925. [
Crossref], [
Google Scholar], [
Publisher], (b) J. Ahmed, M. Sallau, O.R. Iyun, H. Ibrahim, Recent advances in isolation and antimicrobial efficacy of selected strychnos species: a mini review,
Chem. Rev.,
2022,
4, 15-24. [
Crossref], [
Google Scholar], [
Publisher], (c) A. Mohammed Alkherraz, K.M. Elsherif, A. El-Dali, N.A. Blayblo, M. Sasi, Thermodynamic, equilibrium, and kinetic studies of safranin adsorption onto carpobrotus edulis,
Journal of Medicinal and Nanomaterials Chemistry,
2022,
4, 118-131. [Crossref], [
Google Scholar], [
Publisher], (d) S. Sangy, S.F. Miryousefiata, The effects of physical exercise on the immune system,
Eurasian J. Sci. Technol.,
2021,
1, 252-257. [
Crossref], [
Pdf], [
Publisher], (e) F. Ugbe, G. Shallangwa, A. Uzairu, I. Abdulkadir, A 2-D QSAR modeling, molecular docking study and design of 2-arylbenzimidazole derivatives as novel leishmania inhibitors: a molecular dynamics study,
Adv. J. Chem. A,
2023,
6, 50-64. [
Crossref], [
Google Scholar], [
Publisher], (f) F.I. Ahmadi, R. Fathollahi, D. Dastan, Phytochemical constituents and biological properties of scutellaria condensata subsp. Pycnotricha,
Appl. Organomet. Chem.,
2022,
2, 119-128. [
Crossref], [
Google Scholar], [
Publisher], (g) F. Akbarnejad, Dermatology benefits of punica granatum: a review of the potential benefits of punica granatum in skin disorders,
Asian J. Green Chem.,
2023,
7, 208-222. [
Crossref], [
Pdf], [
Publisher], (h) O. Olaleye, A. Oladipupo, B. Oyawaluja, H. Coker, Chemical composition, antioxidative and antimicrobial activities of different extracts of the leaves of parquetina nigrescens (Asclepiadaceae),
Prog. Chem. Biochem. Res.,
2021,
4, 359-371. [
Crossref], [
Google Scholar], [
Publisher], (i) A. Ogbuagu, C. Maduka, I. Okerulu, C. Onyema, C. Onyeizugbe, U. Emezie, Comparative phytochemical, nutritional and antimicrobial screening of the seed, leaf and root of Vigna Subterranea,
Prog. Chem. Biochem. Res.,
1999,
5, 182-195. [
Crossref], [
Pdf], [
Publisher]
[2] W.H. Tay, K.K.L. Chong, K.A. Kline, Polymicrobial–host interactions during infection,
J. mol. Biol.,
2016,
428, 3355. [
Crossref], [
Google Scholar], [
Publisher]
[3] M. Rupp, S. Kern, T. Weber, T. D. Menges, R. Schnettler, C. Heiß, V. Alt, Polymicrobial infections and microbial patterns in infected nonunions–a descriptive analysis of 42 cases,
BMC Infect. Dis.,
2020,
20, 1. [
Crossref], [
Google Scholar], [
Publisher]
[4] S. Hattab, A.M. Dagher, R.T. Wheeler, Pseudomonas synergizes with fluconazole against Candida during treatment of polymicrobial infection,
Infect. Immun.,
2022,
90, e00626. [
Crossref], [
Google Scholar], [
Publisher]
[5] D.K. Furtuna, K. Debora, E.B. Wasito, Antimicrobial susceptibility and the pattern of a biofilm-forming pair of organisms from patients treated in intensive care units in Dr. Soetomo General Hospital, Indonesia,
Bali Med. J.,
2019,
8, 51. [
Crossref], [
Google Scholar]
[6] M. Wahjudi, S. S. Widodo, I.B.M. Artadana, Y. Antonius, The character of PA3235 virulence factors of Pseudomonas aeruginosa PAO1–a preliminary study,
Bali Med. J.,
2023,
12, 1368. [
Crossref], [
Google Scholar], [
Publisher]
[7] I.M.A.S. Putra, N.N.W. Udayani, I.M.Y. Winatra, The effect of giving extract of Giwang ferns (Euphorbia milii) cactus leaves on the number of fibroblast white rats burn infected with Pseudomonas aeruginosa,
Bali Med. J.,
2023,
12, 431. [
Crossref], [
Google Scholar], [
Publisher]
[8] X. Kostoulias, G.L. Murray, G.M. Cerqueira, J.B. Kong, F. Bantun, E. Mylonakis, C. A. Khoo, A.Y. Peleg, Impact of a cross-kingdom signaling molecule of Candida albicans on acinetobacter baumannii physiology,
Antimicrob Agents Chemother,
2016,
60, 161. [
Crossref], [
Google Scholar], [
Publisher]
[9] R.M. Vashvaei, Z. Sepehri, M. Jahantigh, F. Javadian, Study the effect of ethanol extract of Achillea, green tea and Ajowan on Pseudomonas aeruginosa,
Int. J. Adv. Biol. Biom. Res.,
2015,
3, 145. [
Google Scholar], [Publisher]
[10] A. Febriana, A.D.W. Widodo, M.V. Arfijanto, Prevalence and susceptibility profile of carbapenem-resistant pseudomonas aeruginosa (CRPA) at Dr. Soetomo Public Hospital, Surabaya, from January to December
2021,
Bali Med. J.,
2023,
12, 571. [
Crossref], [
Google Scholar], [
Publisher]
[11] S. Bhardwaj, S. Bhatia, S. Singh, F. Franco Jr, Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review,
Iran. J. Basic Med. Sci.,
2021,
24, 699. [
Crossref], [
Google Scholar], [
Publisher]
[12] S. Saha, K.M. Devi, S. Damrolien, K.S. Devi, K.T. Sharma, Biofilm production and its correlation with antibiotic resistance pattern among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital in north-east India,
Int. J. Adv. Med.,
2018,
5, 964. [
Google Scholar], [
Publisher]
[13] N.S. Turkie, S.F. Hameed, Determination of fuconazole using flow injection analysis and Turbidity Measurement by a Homemade NAG-4SX3-3D Analyzer,
Asian J. Green Chem.,
2022,
6, 255. [
Crossref], [
Google Scholar], [
Publisher]
[14] G.M. Pacifici, Clinical pharmacology of fluconazole in neonates: effects and pharmacokinetics,
Int. J. Pediatr.,
2016,
4, 1475. [
Crossref], [
Google Scholar], [
Publisher]
[15] R. Kemenkes, Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/MENKES/6477/2021 tentang daftar obat esensial nasional,
2021. [
Google Scholar]
[16] C. Sasse, N. Dunkel, T. Schäfer, S. Schneider, F. Dierolf, K. Ohlsen, J. Morschhäuser, The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans,
Mol. Microbiol.,
2012,
86, 539. [
Crossref], [
Google Scholar], [
Publisher]
[17] G. Ramadhan, P Hanafi, R. Sulistiorini, Perbandingan Daya Hambat Flukonazol dengan Mikonazol terhadap Jamur Candida albicans secara In Vitro, In
PROSIDING SEMINAR NASIONAL & INTERNASIONAL,
2017, 1. [
Google Scholar], [
Publisher]
[18] R.A. Mahdy, W.M. Nada, M.M. Wageh, Topical amphoteriin B and subconjunctival injection of fluconazole (combination therapy) versus topical amphotericin B (monotherapy) in treatment of keratomycosis,
J. ocul. Pharmacol. Ther.,
2010,
26, 281. [
Crossref], [
Google Scholar], [
Publisher]
[19] I. Syaiful, A.D.W. Widodo, P.D. Endraswari, L. Alimsardjono, B. Utomo, M.V. Arfijanto, The association between biofilm formation ability and antibiotic resistance phenotype in clinical isolates of gram-negative bacteria: a cross-sectional study,
Bali Med. J.,
2023,
12, 1014. [
Crossref], [
Google Scholar], [
Publisher]
[20] Y.C. Wang, S.C. Kuo, Y.S. Yang, Y.T. Lee, C.-H. Chiu, M.F. Chuang, J.C. Lin, F.Y. Chang, T.L. Chen, Individual or combined effects of meropenem, imipenem, sulbactam, colistin, and tigecycline on biofilm-embedded acinetobacter baumannii and biofilm architecture,
Antimicrob. Agents Chemother.,
2016,
60, 4670. [
Crossref], [
Google Scholar], [
Publisher]
[21] J. Haagensen, D. Verotta, L. Huang, J. Engel, A.M. Spormann, K. Yang, Spatiotemporal pharmacodynamics of meropenem-and tobramycin-treated Pseudomonas aeruginosa biofilms, Journal of Antimicrobial Chemotherapy,
2017,
72, 3357. [
Crossref], [
Google Scholar], [
Publisher]
[22] A. Ribera, E. Benavent, C. El-Haj, J. Gomez-Junyent, F. Tubau, R. Rigo-Bonnin, J. Ariza, O. Murillo, Comparative antibiofilm efficacy of meropenem alone and in combination with colistin in an in vitro pharmacodynamic model by extended-spectrum-β-lactamase-producing Klebsiella pneumoniae,
Antimicrob. Agents Chemother.,
2019,
63, 940. [
Crossref], [
Google Scholar], [
Publisher]
[23] Y. Uemura, L. Qin, K. Gotoh, H. Watanabe, K. Ohta, K.-i. Nakamura, Comparison study of single and concurrent administrations of carbapenem, new quinolone, and macrolide against in vitro nontypeable Haemophilus influenzae mature biofilms,
J Infect. Chem.,
2013,
19, 902 [
Crossref], [
Google Scholar], [
Publisher]
[24] P. Chen, A.K. Seth, J.J. Abercrombie, T.A. Mustoe, K.P. Leung, Activity of imipenem against Klebsiella pneumoniae biofilms in vitro and in vivo,
Antimicrob. Agents Chemother.,
2014,
58, 1208. [
Crossref], [
Google Scholar], [
Publisher]
[25] H. Mulcahy, L. Charron-Mazenod, S. Lewenza, Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms,
PLoS Pathogens,
2008,
4, e1000213 [
Crossref], [
Google Scholar], [
Publisher]
[26] A. Ghafoor, I.D. Hay, B.H. Rehm, Role of exopolysaccharides in pseudomonas aeruginosa biofilm formation and architecture,
Appl. Environ. Microbiolo.,
2011,
77, 5238. [
Crossref], [
Google Scholar], [
Publisher]
[27] J.J. Sidrim, C.E. Teixeira, R.A. Cordeiro, R. S. Brilhante, D.S. Castelo-Branco, S.P. Bandeira, L.P. Alencar, J.S. Oliveira, A.J. Monteiro, J. L. Moreira, β-Lactam antibiotics and vancomycin inhibit the growth of planktonic and biofilm Candida spp.: An additional benefit of antibiotic-lock therapy?,
Int. J. Antimicrob. Agents, 2015,
45, 420. [
Crossref], [
Google Scholar], [
Publisher]
[28] P. Uppuluri, A. Srinivasan, A. Ramasubramanian, J.L. Lopez-Ribot, Effects of fluconazole, amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion,
Antimicrob. Agents Chemother.,
2011,
55, 3591. [
Crossref], [
Google Scholar], [
Publisher]
[29] R.C. Bassi, M.F. Boriollo, Amphotericin B, fluconazole, and nystatin as development inhibitors of Candida albicans biofilms on a dental prosthesis reline material: Analytical models in vitro,
J. Prosthet. Dent.,
2022,
127, 320. [
Crossref], [
Google Scholar], [
Publisher]