Document Type : Original Research Article


1 Doctoral Student Agricultural Science Program Universitas Andalas, Padang, 25163, Indonesia, Department of Agricultural Mechanization Technology, Faculty Agricultural Technolgy, Tanjung Pati, 26271, Indonesia

2 Department of Agricultural Industrial Technology, Faculty Agricultural Technology, Padang25163, Indonesia

3 Department of Agribusiness, Faculty of Agriculture, Universitas Andalas, 25163, Indonesia

4 Department of Agricultural and Biosystems Engineering Agricultural Technology, Padang25163, Indonesia

5 Solar Energy Research Institute, University Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia, Research Centre for Electrical Power and Mechatronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia

6 Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Indonesia

7 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, West Sumatra, Indonesia, Center for Advanced Material Processing, Artificial Intelligence and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang, Indonesia


This study focuses on designing a parabolic solar pyrolysis reactor and investigating the effects of pyrolysis temperature and coconut shell particle size on the yield. It also aims to develop a mathematical model to understand the factors influencing pyrolysis and evaluate the energy aspects of solar pyrolysis. The reactor operates at temperatures between 300 °C and 650 °C, with variables like wind speed, light intensity, parabolic size, and material types affecting its performance. The process is also influenced by moisture content, reactor type, heating rate, residence time, and pyrolysis temperature. The study finds that particle size and temperature are crucial in determining the yield. It shows that specific combinations of these factors have a significant influence, with the F-calculated value being more significant at the 5% level than at the 1% level. Optimal results are observed at temperatures ranging from 500 °C to 600 °C. For instance, a 3 mm particle size at 300 °C yields 26.83%, increasing to 37.67% at 600 °C, indicating that smaller material sizes and higher temperatures enhance yields. The energy analysis reveals that the coconut shell receives between 136.29 to 454.89 W of heat, while the energy lost during pyrolysis ranges from 728.46 to 1778.976 W. The output heat energy spans from 864.75 to 2233.87 W, with energy efficiency varying from 16.35% to 30.41%. A heat balance is established using optics and thermodynamics principles, offering insights into the energy efficiency of solar pyrolysis.

Graphical Abstract

Parabolic dish solar pyrolysis for bio-oil production: performance and energy analysis


Main Subjects

[1] M.U. Monir, A. Yousuf, A.A. Aziz, S.M. Atnaw, Enhancing co-gasification of coconut shell by reusing char. Indian J. Sci. Technol., 2017, 10, 1-4. [Crossref], [Google Scholar], [Publisher]‎
[2] M.U. Monir, F. Khatun, A. Abd Aziz, D.V. Vo, Thermal treatment of tar generated during co-gasification of coconut shell and charcoal. J. Clean. Prod., 2020, 256, 120305. [Crossref], [Google Scholar], [Publisher]‎
[3] Y. Shen, J. Wang, X. Ge, M. Chen,   By-products recycling for syngas cleanup in biomass pyrolysis–An overview. Renewable and Sustainable Energy Reviews, 2016, 59, 1246-1268. [Crossref], [Google Scholar], [Publisher]‎
[4] H.Z. Hossain, Q.H. Hossain, M.M.U. Monir, M.T. Ahmed, Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: Revisited. Renewable and Sustainable Energy Reviews,2014,  39, 35-41 [Crossref], [Google Scholar], [Publisher]‎
[5] M.M. Christina, T.Y.R. Destyanto, L. Halim, Waste Management of COVID-19 Personal Protective Equipment in Indonesia and the Potential for Globally Oriented Development. Jurnal Serambi Engineering, 2023, 8, 5009-5020. [Google Scholar], [Publisher]‎
[6] Z. Kaczor, Z. Buliński, Werle, S., Modelling approaches to waste biomass pyrolysis: a review. Renewable Energy, 2020159, 427-443. [Crossref], [Google Scholar], [Publisher]‎
[7] E. Budi, Tinjauan proses pembentukan dan penggunaan arang tempurung kelapa sebagai bahan bakar. Jurnal Penelitian Sains2011, 14. [Crossref], [Google Scholar], [Publisher]‎
[8] M.M. Iqbaldin, I. Khudzir, M.M. Azlan, A.G. Zaidi, B. Surani, Z. Zubri, Properties of coconut shell activated carbon. Journal of Tropical Forest Science, 2013, 497-503. [Google Scholar], [Publisher]‎
[9] H.M. Mozammel, O. Masahiro, S.C. Bhattacharya, Activated charcoal from coconut shell using ZnCl2 activation. Biomass and Bioenergy2002, 22, 397-400. [Crossref], [Google Scholar], [Publisher]‎
[10] A. Ohliger, M. Förster, R. Kneer, Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel, 2013, 104, 607-613. [Crossref], [Google Scholar], [Publisher]‎
[11] P. Basu, Biomass gasification design handbook. Academic; 2010. [Google Scholar], [Publisher]‎
[12] H. Hasanudin, W.R. Asri, I.S. Zulaikha, C. Ayu, A. Rachmat, F. Riyanti, F. Hadiah, R. Zainul, R. Maryana, Hydrocracking of crude palm oil to a biofuel using zirconium nitride and zirconium phosphide-modified bentonite. RSC advances, 2022,   12, 21916-21925. [Crossref], [Google Scholar], [Publisher]‎
[13] S.A. Novita, A. Fudholi, P. Putera, October. Performance and Characteristics of Bio-Oil from Pyrolysis Process of Rice Husk. In IOP Conference Series: Earth and Environmental Science, 2022,   1097, 012019 [Crossref], [Google Scholar], [Publisher]‎
[14] N. Piatkowski, C. Wieckert, A.W. Weimer, A. Steinfeld, Solar-driven gasification of carbonaceous feedstock—a review. Energy & Environmental Science, 2011,   4, 73-82. [Crossref], [Google Scholar], [Publisher]‎
[15] P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Solar-driven interfacial evaporation. Nature energy2018, 3, 1031-1041. [Crossref], [Google Scholar], [Publisher]
[16] P. Gorantla, B. Janarthanan, J. Chandrasekaran, Solar Concentrators–A Review. Int. j. innov. res. technol. sci. eng.. 2016, 19187-19197. [Google Scholar], [Publisher]‎
[17] S. Morales, R. Miranda, D. Bustos, T. Cazares, H. Tran, Solar biomass pyrolysis for the production of bio-fuels and chemical commodities. Journal of Analytical and Applied Pyrolysis2014, 109, 65-78. [Crossref], [Google Scholar], [Publisher]‎
[18] R. Zainul, A. Alif, H. Aziz, S. Arief, 2015. Disain Geometri Reaktor Fotosel Cahaya Ruang. Jurnal Riset Kimia,2015,  8, 131-131. [Crossref], [Google Scholar], [Publisher]‎
[19] R Li, Solar pyrolysis of agricultural, forest and metal-contaminated biomass (Doctoral dissertation, Perpignan), 2020 [Google Scholar]
[20] Y. Xie, K. Zeng, G. Flamant, H. Yang, N. Liu, X. He, X. Yang, A. Nzihou, Chen, H., Solar pyrolysis of cotton stalk in molten salt for bio-fuel production. Energy, 2019,   179, 1124-1132. [Crossref], [Google Scholar], [Publisher]‎
[21] H. Weldekidan, V. Strezov, R. Li, T. Kan, G. Town, R. Kumar, J. He, G. Flamant, Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters. Renewable Energy, 2020, 151, 1102-1109. [Crossref], [Google Scholar], [Publisher]‎
[22] F. Rahmawati, K.R. Heliani, A.T. Wijayanta, R. Zainul, K. Wijaya, T. Miyazaki, J. Miyawaki, Alkaline leaching-carbon from sugarcane solid waste for screen-printed carbon electrode. Chemical Papers, 2023,   77 , 3399-3411. [Crossref], [Google Scholar], [Publisher]‎
[23] E. Bellos, C. Tzivanidis, Analytical expression of parabolic trough solar collector performance. Designs, 2018, 2, 9. [Crossref], [Google Scholar], [Publisher]‎
[24] S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, An overview of the chemical composition of biomass. Fuel, 2010,   89, 913-933. [Crossref], [Google Scholar], [Publisher]‎
[25] M. Sharifzadeh, M. Sadeqzadeh, M. Guo, T.N. Borhani, N.M. Konda, M.C. Garcia, L. Wang, J. Hallett, N. Shah, The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science, 2019,   71, 1-80. [Crossref], [Google Scholar], [Publisher]‎
[26] G. Pikra, A. Salim, A.J. Purwanto, Z. Eddy, Parabolic Trough Solar Collector Initial Trials. Journal of Mechatronics, Electrical Power, and Vehicular Technology2012, 2, 57-64. [Google Scholar], [Publisher]‎
[27] D.R. Cox, N. Reid, The theory of the design of experiments. CRC Press.2000 [Crossref], [Google Scholar], [Publisher]‎
[28] M.A. Rahman, A.M. Parvej, M.A. Aziz, Concentrating technologies with reactor integration and effect of process variables on solar assisted pyrolysis: A critical review. Thermal Science and Engineering Progress, 2021,   25, 100957. [Crossref], [Google Scholar], [Publisher]‎
[29] J. Kearney, Food consumption trends and drivers. Philosophical transactions of the royal society B: biological sciences, 2010,   365, 2793-2807. [Crossref], [Google Scholar], [Publisher]‎
[30] D. Canavarro, J. Chaves, M. Collares-Pereira, A novel Compound Elliptical-type Concentrator for parabolic primaries with tubular receiver. Solar Energy2016, 134, 383-391. [Crossref], [Google Scholar], [Publisher]‎
[31] M.S.A. Bakar, J.O. Titiloye, Catalytic pyrolysis of rice husk for bio-oil production. Journal of analytical and applied pyrolysis2013, 103, 362-368. [Crossref], [Google Scholar], [Publisher]‎
[32] F. Muhammad-Sukki, R. Ramirez-Iniguez, , S.G. McMeekin, B.G. Stewart, B. Clive, Optimised dielectric totally internally reflecting concentrator for the solar photonic optoelectronic transformer system: maximum concentration method. In Knowledge-Based and Intelligent Information and Engineering Systems: 14th International Conference, KES 2010, Cardiff, UK, September 8-10, 2010, Proceedings, Part IV, 2010,   14  ,  633-641Springer Berlin Heidelberg. [Crossref], [Google Scholar], [Publisher]‎
[33] A.K. Panda, R.K. Singh, D.K. Mishra, Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 2010,   14, 233-248. [Crossref], [Google Scholar], [Publisher]‎
[34] D. Rahmadiawan, H. Abral, M.K. Ilham, P. Puspitasari,  R.A. Nabawi, S.C. Shi, E. Sugiarti, A.N. Muslimin, D. Chandra, R.A. Ilyas, R. Zainul, Enhanced UV blocking, tensile and thermal properties of bendable TEMPO-oxidized bacterial cellulose powder-based films immersed in PVA/Uncaria gambir/ZnO solution. Journal of Materials Research and Technology, 2023,   26, 5566-5575. [Crossref], [Google Scholar], [Publisher]‎
[35] M.C. Ndukwu, I.T. Horsfall, E.A. Ubouh, F.N. Orji,   I.E. Ekop, N.R. Ezejiofor, Review of solar-biomass pyrolysis systems: Focus on the configuration of thermal-solar systems and reactor orientation. Journal of King Saud University-Engineering Sciences, 2021, 33, 413-423. [Crossref], [Google Scholar], [Publisher]‎
[36] M.A. Rahman, M.A. Aziz, Solar pyrolysis of scrap tire: optimization of operating parameters. Journal of Material Cycles and Waste Management, 2018, 20, 1207-1215. [Crossref], [Google Scholar], [Publisher]‎
[37] M.U. Joardder, P.K. Halder, A. Rahim, N. Paul, Solar assisted fast pyrolysis: a novel approach of renewable energy production. Journal of engineering2014. [Crossref], [Google Scholar], [Publisher]‎
[38] R. Zainul, S.W. Wardani, The Hydrogen Generator Performance of Sandwich Designed 4/4 Al-Cu Plates. EKSAKTA: Berkala Ilmiah Bidang MIPA,   2019, 20, 100-104. [Crossref], [Google Scholar], [Publisher]‎
[39] M.U.H. Joardder, P.K. Halder, M.A. Rahim, M.H. Masud, Solar pyrolysis: converting waste into asset using solar energy. In Clean energy for sustainable development, 2017, 213-235. [Crossref], [Google Scholar], [Publisher]‎
[40] A.A. Amri, M. Nuruddin, R.E. Rachmanita, Uji Performa Kompor Surya Tipe Parabola Silinder Menggunakan Reflektor Cermin dengan Variasi Bahan Absorber. Jurnal Energi dan Manufaktur2020, 13, 8-14. [Google Scholar]
[41] M. Kumar, D. Singh, Performance evaluation of parabolic dish type solar cooker using different materials for cooking vessel. Performance Evaluation, 2018 [Google Scholar], [Publisher]‎
[42] J. Zeaiter, F. Azizi, M. Lameh, D. Milani, H.Y. Ismail, A. Abbas, Waste tire pyrolysis using thermal solar energy: An integrated approach. Renewable energy, 2018,   123, 44-51. [Crossref], [Google Scholar], [Publisher]‎
[43] B. Grycová, I. Koutník, A. Pryszcz, Pyrolysis process for the treatment of food waste. Bioresource technology, 2016,  218, 1203-1207. [Crossref], [Google Scholar], [Publisher]‎
[44] M.C. Ndukwu, D. Onyenwigwe, F.I. Abam, A.B. Eke, C. Dirioha, Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renewable Energy, 2020,   154, pp.553-568. [Crossref], [Google Scholar], [Publisher]‎
[45] M.U.H. Joardder, P.K. Halder, M.A. Rahim, M.H. Masud, Solar pyrolysis: converting waste into asset using solar energy. In Clean energy for sustainable development, 2017, 213-235 [Crossref], [Google Scholar], [Publisher]‎
[46] S.A. Novita, A. Fudholi, P. Putera, October. Performance and Characteristics of Bio-Oil from Pyrolysis Process of Rice Husk. In IOP Conference Series: Earth and Environmental Science, 2022,   1097, 012019 [Crossref], [Google Scholar], [Publisher]‎
[47] T.Y. Fahmy, Y. Fahmy, F. Mobarak, El- M. Sakhawy, R.E. Abou-Zeid, Biomass pyrolysis: past, present, and future. Environment, Development and Sustainability, 2020,   22, 17-32. [Crossref], [Google Scholar], [Publisher]‎
[48] H. Hassan, J.K. Lim, B.H. Hameed, Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresource Technology,   2016, 221, 645-655. [Crossref], [Google Scholar], [Publisher]‎
[49] D. Chen, K. Cen, X. Cao, J. Zhang, F. Chen, J. Zhou, Upgrading of bio-oil via solar pyrolysis of the biomass pretreated with aqueous phase bio-oil washing, solar drying, and solar torrefaction. Bioresource technology, 2020,   305, 123130. [Crossref], [Google Scholar], [Publisher]‎
[50] S. Wang, G. Dai, H. Yang, Z. Luo, Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in energy and combustion science2017, 62, 33-86. [Crossref], [Google Scholar], [Publisher]‎
[51] A. Hamid, Z. Rahmawati, M. Abdullah, T.E. Purbaningtyas, F. Rohmah, I.D. Febriana, The Influence of NaOH Activator Concentration on the Synthesis of Activated Carbon from Banana Peel for Pb (II) Adsorption. EKSAKTA: Berkala Ilmiah Bidang MIPA, 202223, 158-166. [Crossref], [Google Scholar], [Publisher]‎
[52] M.D. Guillén, M.L. Ibargoitia, Influence of the moisture content on the composition of the liquid smoke produced in the pyrolysis process of Fagus sylvatica L. wood. Journal of agricultural and food chemistry, 1999,   47, 4126-4136. [Crossref], [Google Scholar], [Publisher]‎
[53] A. Demirbas, Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of analytical and applied pyrolysis, 2004, 72, 243-248. [Crossref], [Google Scholar], [Publisher]‎
[54] W. Cheng, Q. Zhao, A modified quasi-boundary value method for a two-dimensional inverse heat conduction problem. Computers & Mathematics with Applications2020, 79, 293-302. [Crossref], [Google Scholar], [Publisher]‎
[55]J. Shen, X.S. Wang, M. Garcia-Perez, D. Mourant, M.J. Rhodes, C.Z. Li, Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 2009,   88, 1810-1817. [Crossref], [Google Scholar], [Publisher]‎
[56] R.E. Guedes, A.S. Luna, A.R. Torres, Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of analytical and applied pyrolysis, 2018129, 134-149. [Crossref], [Google Scholar], [Publisher]‎
[57] G. Belotti, B. de Caprariis, P. De Filippis, M. Scarsella, N. Verdone, Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass and Bioenergy2014, 61, 187-195. [Crossref], [Google Scholar], [Publisher]‎
[58] D. Ayllón, A. Almodóvar, G.G. Nicola, I. Parra, B. Elvira, Modelling carrying capacity dynamics for the conservation and management of territorial salmonids. Fisheries Research, 2012, 134, 95-103. [Crossref], [Google Scholar], [Publisher]‎
[59] B.B. Uzun, A.E. Pütün, E. Pütün, Fast pyrolysis of soybean cake: Product yields and compositions. Bioresource technology,2006,  97, 569-576. [Crossref], [Google Scholar], [Publisher]‎
[60] A.R. Mohamed, Z. Hamzah, M.Z.M. Daud, Z. Zakaria, The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed–bed reactor. Procedia Engineering, 2013,  53, 185-191. [Crossref], [Google Scholar], [Publisher]‎
[61] W.T. Tsai, M.K. Lee, Y.M. Chang, Fast pyrolysis of rice husk: Product yields and compositions. Bioresource technology, 2007,  98, 22-28 [Crossref], [Google Scholar], [Publisher]‎
[62] M. Tripathi, J.N. Sahu, P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and sustainable energy reviews, 2016,  55, 467-481. [Crossref], [Google Scholar], [Publisher]‎
[63] K.H. Kim, I.Y. Eom, S.M. Lee, D. Choi, H. Yeo, I.G. Choi, J.W. Choi, Investigation of physicochemical properties of biooils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times. Journal of Analytical and Applied Pyrolysis, 201192, 2-9. [Crossref], [Google Scholar], [Publisher]‎
[64] N. Yessirita, R. Verawati, D. Purnamasari, R. Rollando, R.S. Mandeli, M.T. Albari, P. Azhari, R. Zainul, V.D. Kharisma, V. Jakhmola, M. Rebezov, In Silico Study of Rhamnocitrin Extract from Clove (Syzygium Aromaricum) in Inhibiting Adenosine A1-Adenylate Cyclase Interaction. Pharmacognosy Journal2023, 15(4). [Crossref], [Google Scholar], [Publisher]‎
[65] H. Zhou, Y. Long, A. Meng, Q. Li, Y. Zhang, The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta, 2013566, 36-43. [Crossref], [Google Scholar], [Publisher]‎
[66] V. Chintala, S. Kumar, J.K. Pandey, A.K. Sharma, S. Kumar, Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy conversion and management2017, 153, 482-492. [Crossref], [Google Scholar], [Publisher]‎
[67] H. Wu, D. Gauthier, Y. Yu, X.  Gao, G. Flamant, Solar-thermal pyrolysis of mallee wood at high temperatures. Energy & Fuels, 201732, 4350-4356. [Crossref], [Google Scholar], [Publisher]‎
[68] H. Weldekidan, V. Strezov, G. Town, T. Kan, Production and analysis of fuels and chemicals obtained from rice husk pyrolysis with concentrated solar radiation. Fuel, 2018, 233, 396-403. [Crossref], [Google Scholar], [Publisher]‎
[69] R.E. Guedes, A.S. Luna, A.R. Torres, Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of analytical and applied pyrolysis, 2018129, 134-149. [Crossref], [Google Scholar], [Publisher]‎
[70] T.K. Dada, M. Sheehan, S. Murugavelh, E. Antunes, A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Conversion and Biorefinery, 2021, 1-20. [Crossref], [Google Scholar], [Publisher]