[1] (a) S. Suksamrarn, N. Suwannapoch, W. Phakhodee, J. Thanuhiranlert, P. Ratananukul, N. Chimnoi, A. Suksamrarn, Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana,
Pharm. Bull.,
2003,
51, 857-859. [
Crossref], [
Google Scholar], [
Publisher], (b) A. Zarei, R. Amirkhani, M. Gholampour, H. Tavakoli, A. Ramazani, Natural compounds as strong SARS-CoV-2 main protease inhibitors: computer-based study,
J. Med. Pharm. Chem. Res.,
2023,
5, 969-986. [
Crossref], [
Pdf], [
Publisher], (c) M. Ahmeid, S. Essa, E.R. Jasim, Evaluating the level of vitamin D in Iraqi covid-19 patients and its association with biochemical parameters,
J. Med. Pharm. Chem. Res.,
2023,
5, 126-135. [
Pdf], [
Publisher], (d) S. Rezaei, B. Naghipour, M. Rezaei, M. Dadashzadeh, S. Sadeghi, Chemical evaluation of gastrointestinal, coronary and pulmonary complications in patients admitted to the intensive care unit,
J. Med. Pharm. Chem. Res.,
2022,
4, 557-566. [
Crossref], [
Pdf], [
Google Scholar], [
Publisher], (e) M.A.H. Roni, M.G. Mortuza, Rozina, ,., R.K. Shaha, S. Hoque, A. Kumer, Identification of SARS-CoV-2 inhibitors from alkaloids using molecular modeling and in silico approaches,
J. Med. Nanomater. Chem.,
2023,
In Press, 252-266. [
Crossref], [
Pdf], [
Publisher], (f) V.R. Lakshmidevi, D. Reeja, A.R. Rajan, B. Vinod, Advanced spectrum of imidazole derivatives in therapeutics: a review,
J. Chem. Rev.,
2023;
5, 241-262. [
Crossref], [
Pdf], [
Publisher], (g) E. Edache, H. Dawi, F. Ugbe, 3D-QSAR, molecular docking, molecular dynamics simulations and structural studies of some selected inhibitors of the glycoprotein (GPC) of lassa virus,
J. Appl. Organomet. Chem.,
2023, 3, 224-244. [
Crossref], [
Pdf], [
Google Scholar], [
Publisher]
[2] P. Moongkarndi, N. Kosem, O. Luanratana, S. Jongsomboonkusol, N. Pongpan, B. Sudatis, Antiproliferation, antioxidation and induction of apoptosis by
Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line
, J. Ethnopharmacol.,
2004,
90, 161-166. [
Crossref], [
Google Scholar], [
Publisher]
[3] V.T. Nguyen, T. Tran, T. Van Vo, Antiviral activity of garcinol and its derivatives against influenza A virus
in vitro and
in vivo,
Bioorg. Med. Chem. Lett.,
2012, 22, 3919-3923. [
Crossref], [
Google Scholar], [
Publisher]
[4] S. Ben-Shabat, L. Yarmolinsky, D. Porat, A. Dahan, Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies,
Drug Deliv. Transl. Res.,
2020,
10, 354–367 [
Crossref], [
Google Scholar], [
Publisher]
[5] S. Tewtrakul, C. Wattanapiromsakul, W. Mahabusarakam, Effects of compounds from
Garcinia mangostana on inflammatory mediators in RAW264.7 macrophage cells,
J. Ethnopharmacol.,
2009,
121, 379-382 [
Crossref], [
Google Scholar], [
Publisher]
[6] S.Y. Tsai, P.C. Chung, E.E. Owaga, I.J. Tsai, P.Y. Wang, J.I. Tsai, T.S. Yeh, R.H. Hsieh, Alpha-mangostin from mangosteen (
Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis,
Nutr. Metab.,
2016,
13, 1-10 [
Crossref], [
Google Scholar], [
Publisher]
[7] L.G. Chen, L.L. Yang, C.C. Wang, Anti-inflammatory activity of mangostins from Garcinia mangostana.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
2008,
46, 688–693 [
Crossref], [
Google Scholar], [
Publisher]
[8] M. Karim, W. Lo C, S. Einav, Preparing for the next viral threat with broad-spectrum antivirals,
J. Clin. Investig.,
2023,
133, e170236. [
Crossref], [
Google Scholar], [
Publisher]
[9] C. Xu, G. Sun, G. Yuan, α-Mangostin suppresses the viability and epithelial-mesenchymal transition of pancreatic cancer cells by downregulating the PI3K/Akt pathway,
Biomed. Res. Int.
2020,
2020, 2726931. [
Crossref], [
Google Scholar], [
Publisher]
[10] X. Zhu, J. Li, H. Ning, , Z. Yuan, Y. Zhong, S. Wu, J.Z .Zeng, α-Mangostin induces apoptosis and inhibits metastasis of breast cancer cells via regulating RXRα-AKT signaling pathway,
Front. Pharmacol.,
2021,
12, 739658. [
Crossref], [
Google Scholar], [
Publisher]
[11] V. Minervini, C.P. France, Effects of opioid/cannabinoid mixtures on impulsivity and memory in rhesus monkeys,
Behav. Pharmacol.,
2020,
31, 233–248. [
Crossref], [
Google Scholar], [
Publisher]
[12] R. Watanapokasin, F. Jarinthanan, Y. Nakamura, N. Sawasjirakij, A. Jaratrungtawee, S. Suksamrarn, Effects of α-mangostin on apoptosis induction of human colon cancer,
World J. Gastroenterol.,
2011,
17, 2086–2095. [
Crossref], [
Google Scholar], [
Publisher]
[13] X. Tu, C. Li, W. Sun, X. Tian, Q. Li, S. Wang, X. Ding, Z. Huang, Suppression of Cancer Cell Stemness and Drug Resistance via MYC Destabilization by Deubiquitinase USP45 Inhibition with a Natural Small Molecule,
Cancers,
2023,
15, 930. [
Crossref], [
Google Scholar], [
Publisher]
[14] D. Chatterjee, N. Vhora, A. Goswami, A. Hiray, A. Jain, A. S. Kate, In-silico and in-vitro hybrid approach to identify glucagon-like peptide-1 receptor agonists from anti-diabetic natural products,
Nat. Prod. Res.,
2023,
37, 1651–1655. [
Crossref], [
Google Scholar], [
Publisher]
[15] R. Li, B.S. Inbaraj, B.H. Chen, Quantification of xanthone and anthocyanin in mangosteen peel by UPLC-MS/MS and preparation of nanoemulsions for studying their inhibition effects on liver cancer cells,
Int. J. Mol. Sci.,
2023,
24, 3934. [
Crossref], [
Google Scholar], [
Publisher]
[16] S. Wang, Q. Zhang, M. Peng, J. Xu, Y. Guo, Design, Synthesis, Biological evaluation, and preliminary mechanistic study of a novel mitochondrial-targeted xanthone,
Molecules,
2023,
28, 1016. [
Crossref], [
Google Scholar], [
Publisher]
[17] E. Marchese, V. Orlandi, F. Turrini, I. Romeo, R. Boggia, S. Alcaro, G. Costa, In silico and in vitro study of antioxidant potential of urolithins.
Antioxidants,
2023,
12, 697. [
Crossref], [
Google Scholar], [
Publisher]
[18] A. Chouni, S. Paul, A comprehensive review of the phytochemical and pharmacological potential of an evergreen plant garcinia cowa.
Chem. Biodivers.,
2023,
20, e202200910. [
Crossref], [
Google Scholar], [
Publisher]
[19] Y. Niu, Q. Li, C. Tu, N. Li, L. Gao, H. Lin, Z. Wang, Z. Zhou, L. Li, Hypouricemic Actions of the Pericarp of Mangosteen in Vitro and in Vivo,
J. Nat. Prod.,
2023,
86, 24–33. [
Crossref], [
Google Scholar], [
Publisher]
[20] A. Cruz-Gregorio, A. K. Aranda-Rivera, O. E. Aparicio-Trejo, O.N. Medina-Campos, E. Sciutto, G. Fragoso, J. Pedraza-Chaverri, α-Mangostin induces oxidative damage, mitochondrial dysfunction, and apoptosis in a triple-negative breast cancer model,
Phytotherapy Research: PTR,
2023,
37, 3394–3407. [
Crossref], [
Google Scholar], [
Publisher]
[21] R. Ahmadian, M. R. Heidari, B.M. Razavi, H. Hosseinzadeh, Alpha-mangostin protects PC12 cells against neurotoxicity induced by cadmium and arsenic,
Biol. Trace Elem. Res.,
2023,
201, 4008–4021. [
Crossref], [
Google Scholar], [
Publisher]
[22] Y.H. Lee, P.L. Hsieh, S.C. Chao, Y.W. Liao, C.M. Liu, C.C. Yu, α-Mangostin inhibits the activation of myofibroblasts via downregulation of linc-ROR-mediated TGFB1/smad signaling,
Nutrients,
2023,
15, 1321. [
Crossref], [
Google Scholar], [
Publisher]
[23] Y.J. Wu, S.S. Zhang, Q. Yin, M. Lei, Q.H. Wang, W.G. Chen, T.T. Luo, P. Zhou, C.L. Ji, α-Mangostin inhibited M1 polarization of macrophages/monocytes in antigen-induced arthritis mice by up-regulating silent information regulator 1 and peroxisome proliferators-activated receptor γ simultaneously,
Drug Des. Devel. Ther.,
2023,
17, 563–577. [
Crossref], [
Google Scholar], [
Publisher]
[24] B. Lawal, A.T. Wu, C.H.M. Chen, G.T.A.S. Y. Wu, Identification of INFG/STAT1/NOTCH3 as γ-Mangostin's potential targets for overcoming doxorubicin resistance and reducing cancer-associated fibroblasts in triple-negative breast cancer,
Biomed. Pharmacother.,
2023,
163, 114800. [
Crossref], [
Google Scholar], [
Publisher]
[25] T.T. Le, N.T. Trang, V.T.T. Pham, D.N. Quang, L.T. Phuong Hoa, Bioactivities of β-mangostin and its new glycoside derivatives synthesized by enzymatic reactions,
R. Soc. Open Sci.,
2023,
10, 230676. [
Crossref], [
Google Scholar], [
Publisher]
[26] M.T. Khayat, K.A. Mohammad, G.A. Mohamed, D.S. El-Agamy, W.M. Elsaed, S.R.M. Ibrahim, γ-Mangostin abrogates AINT-induced cholestatic liver injury: Impact on Nrf2/NF-κB/NLRP3/Caspase-1/IL-1β/GSDMD signaling,
Life Sci.,
2023,
322, 121663. [
Crossref], [
Google Scholar], [
Publisher]
[27] X. Li, M. Geng, Y. Peng, L. Meng, S. Lu, Molecular immune pathogenesis and diagnosis of COVID-19,
J. Pharm. Anal., 2020,
10, 102-108. [
Crossref], [
Google Scholar], [
Publisher]
[28] Y. Cai, J. Zhang, T. Xiao, H. Peng, S.M. Sterling, R.M. Walsh Jr, S. Rawson, S. Rits-Volloch, B. Chen, Distinct conformational states of SARS-CoV-2 spike protein,
Science,
2020,
369, 1586-1592. [
Crossref], [
Google Scholar], [
Publisher]
[29] M.A. Marra, S.J. Jones, C.R. Astell, R.A. Holt, A. Brooks-Wilson, Y.S. Butterfield, J. Khattra, J.K. Asano, S.A. Barber, S.Y. Chan, A. Cloutier, The genome sequence of the SARS-associated coronavirus,
Science,
2003,
300, 1399-1404. [
Crossref], [
Google Scholar], [
Publisher]
[30] F. Wu, S. Zhao , B. Yu, Y.M. Chen, W. Wang, Z.G. Song, Y. Hu, Z.W. Tao, J.H. Tian, Y.Y. Pei, M.L. Yuan, A new coronavirus associated with human respiratory disease in China,
Nature, 2020,
579, 265-269. [
Crossref], [
Google Scholar], [
Publisher]
[31] A.N.M. Ansori, V.D. Kharisma, A.A. Parikesit, F.A. Dian, R.T. Probojati, M. Rebezov, P. Scherbakov, P. Burkov, G. Zhdanova, A. Mikhalev, Y. Antonius, N.I. Sumantri, T.H. Sucipto, R. Zainul, P.M.R. Fadhil, Bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanism against SARS-CoV-2: an in silico approach,
Pharmacogn. J.,
2022,
14, 85-90. [
Crossref], [
Google Scholar], [
Publisher]
[32] V.D. Kharisma, A.N.M. Ansori, Y. Antonius, I. Rosadi, A.A.A. Murtadlo, V. Jakhmola, M. Rebezov, N. Maksimiuk, E. Kolesnik, P. Burkov, M. Derkho, P. Scherbakov, M.E. Ullah, T.H. Sucipto, H. Purnobasuki, Garcinoxanthones from Garcinia mangostana L. against SARS-CoV-2 infection and cytokine storm pathway inhibition: A viroinformatics study,
J. Pharm. Pharmacogn. Res.,
2023,
11, 743-756. [
Crossref], [
Google Scholar], [
Publisher]
[33] L. Zhang, D. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K. Rox, R. Hilgenfeld, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors,
Science,
2020,
368, 409-412. [
Crossref], [
Google Scholar], [
Publisher]
[34] W. Dai, B. Zhang, X.M. Jiang, H. Su, J. Li, Y. Zhao, X. Xie, Z. Jin, J. Peng, F. Liu, C. Li, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease,
Science, 2020,
368, 1331-1335. [
Crossref], [
Google Scholar], [
Publisher]
[35] D. Wrapp, N. Wang, K.S. Corbett, J.A. Goldsmith, C.L. Hsieh, O. Abiona, B.S. Graham, J.S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation,
Science, 2020,
367, 1260-1263. [
Crossref], [
Google Scholar], [
Publisher]
[36] J. Shang, G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach, F. Li, Structural basis of receptor recognition by SARS-CoV-2,
Nature,
2020,
581, 221-224. [
Crossref], [
Google Scholar], [
Publisher]
[37] R.J. Khan, R.K. Jha, G.M. Amera, M. Jain, E. Singh, A. Pathak, R.P. Singh, J. Muthukumaran, A.K. Singh, Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase,
J. Biomol. Struct. Dyn.,
2021,
39, 3203-3221. [
Crossref], [
Google Scholar], [
Publisher]
[38] Y. Gao, L. Yan, Y. Huang, F. Liu, Y. Zhao, L. Cao, T. Wang, Q. Sun, Z. Ming, L. Zhang, J. Ge, Structure of the RNA-dependent RNA polymerase from COVID-19 virus,
Science,
2020,
368, 779-782. [
Crossref], [
Google Scholar], [
Publisher]
[39] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro,
Cell researc., 2020,
30, 269-271. [
Crossref], [
Google Scholar], [
Publisher]
[40] L.U. Setyawati, W. Nurhidayah, N.K. Khairul Ikram, W.E. Mohd Fuad, M. Muchtaridi, General toxicity studies of alpha mangostin from
Garcinia mangostana: A systematic review,
Heliyon,
2023,
9, e16045. [
Crossref], [
Google Scholar], [
Publisher]
[41] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.H. Wu, A. Nitsche, M.A. Müller, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor,
Cell, 2020,
181, 271-280.e8. [
Crossref], [
Google Scholar], [
Publisher]
[42] C. Kong, L. Jia, J. Jia, γ-mangostin attenuates amyloid-β42-induced neuroinflammation and oxidative stress in microglia-like BV2 cells via the mitogen-activated protein kinases signaling pathway,
Eur. J. Pharmacol.,
2022,
917, 174744. [
Crossref], [
Google Scholar], [
Publisher]
[43] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,
Nature,
2020,
582, 289-293. [
Crossref], [
Google Scholar], [
Publisher]
[44] C. Ding, Z. Song, A. Shen, T. Chen, A. Zhang, Small molecules targeting the innate immune cGAS‒STING‒TBK1 signaling pathway. Acta pharmaceutica Sinica. B,
2020,
10, 2272–2298. [
Crossref], [
Google Scholar], [
Publisher]
[46] J.Y. Baek, K. Jung, Y.M. Kim, H.Y. Kim, K.S. Kang, Y.W. Chin, Protective Effect of γ-mangostin Isolated from the Peel of Garcinia mangostana against Glutamate-Induced Cytotoxicity in HT22 Hippocampal Neuronal Cells,
Biomolecules,
2021,
11, 170. [
Crossref], [
Google Scholar], [
Publisher]
[47] T. Tang, M. Bidon, J.A. Jaimes, G.R. Whittaker, S. Daniel, Coronavirus membrane fusion mechanism offers a potential target for antiviral development,
Antiviral Res.,
2020,
178, 104792. [
Crossref], [
Google Scholar], [
Publisher]
[48] S.P. Chen, S.R. Lin, T.H. Chen, H.S. Ng, H.S. Yim, M.K. Leong, C.F. Weng, Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ.
Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie,
2021,
144, 112333. [
Crossref], [
Google Scholar], [
Publisher]
[49] S. Ozono, Y. Zhang, H. Ode, K. Sano, T.S. Tan, K. Imai, K. Miyoshi, S. Kishigami, T. Ueno, Y. Iwatani, T. Suzuki, SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity.
Nature communications,
2021,
12, 848. [
Crossref], [
Google Scholar], [
Publisher]
[50] T.Y. Pramana, B. Wasita, V. Widyaningsih, R. Cilmiaty, S. Suroto, A. Mudigdo, B. Purwanto,The ethanol extract of Garcinia mangostana L peel reduces the isoniazid-induced liver damage in rats,
Bali Medical Journal,
2021,
10, 156–159. [
Crossref], [
Google Scholar], [
Publisher]
[51] R.S. Indharty, I. Japardi, A.M. Siahaan, S. Tandean, Mangosteen extract reduce apoptosis via inhibition of oxidative process in rat model of traumatic brain injury,
Bali Medical Journal,
2019,
8, 227–232. [
Crossref], [
Google Scholar], [
Publisher]
[52] P.S. Hu, N.Y. Hsia, W.C. Chien, M.C. Mong, T.C. Hsia, H.M. Chang, Y.C. Wang, W.S. Chang, D.T. Bau, C.W. Tsai, Protective effects of gamma-mangostin on hydrogen peroxideinduced cytotoxicity in human retinal pigment epithelial cells,
In Vivo,
2022,
36, 1676–1683. [
Crossref], [
Google Scholar], [
Publisher]
[53] A.T. Wu, Y.C. Yeh, Y.J. Huang, N. Mokgautsi, B. Lawal, T.H. Huang, Gamma-mangostin isolated from garcinia mangostana suppresses colon carcinogenesis and stemness by downregulating the GSK3β/β-catenin/CDK6 cancer stem pathway,
Phytomedicine: International Journal of Phytotherapy and Phytopharmacology,
2022,
95, 153797. [
Crossref], [
Google Scholar], [
Publisher]