Document Type : Original Research Article

Authors

1 Postgraduate School, Universitas Airlangga, Surabaya, Indonesia

2 Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India

3 Generasi Biologi Indonesia Foundation, Gresik, Indonesia

4 Division of Research and Development, CV Jalan Tengah, Pasuruan, Indonesia

5 European Virus Bioinformatics Center, Jena, Germany

6 Master Program of Biology, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia

7 Department of Biology, Faculty of Science, Technology and Education, Universitas Muhammadiyah Lamongan, Lamongan, Indonesia

8 Department of Biology Education, Faculty of Teacher Training and Education, Mulawarman University, Samarinda, Indonesia

9 Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia

10 Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation

11 Department of Scientific Research, Ural State Agrarian University, Yekaterinburg, Russian Federation

12 Center for Advanced Material Processing, Artificial Intelligence, and Biophysic Informatics (CAMPBIOTICS), Universitas Negeri Padang, Padang, Indonesia

13 Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

14 School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia

15 Research Center for Veterinary Sciences, National Research and Innovation Agency, Bogor, Indonesia

Abstract

The global health landscape has seen an upsurge in viral diseases, underlining the urgency for novel antiviral therapies. This mini-review illuminates the potential antiviral capabilities of gamma-mangostin, a xanthone derivative derived from the pericarp of the Garcinia mangostana fruit. Gamma-mangostin's mechanisms of action are multifaceted, displaying inhibitory effects on viral entry into host cells, disrupting essential cell signalling pathways for viral replication, and enhancing the host's immune response via antiviral cytokine stimulation. This compound has demonstrated significant in vitro efficacy against numerous viruses, including Influenza A virus, Herpes simplex virus, and Hepatitis C virus, and emerging preliminary research suggests potential utility against SARS-CoV-2. Its broad-spectrum antiviral properties and low cytotoxicity earmark gamma-mangostin as a promising candidate for future antiviral agent development. However, rigorous investigation is required to determine its pharmacokinetics, bioavailability, and safety profile. With the escalating burden of viral diseases, gamma-mangostin could represent an important tool in the armamentarium for disease management, contingent upon further study. This review provides an overview of current research into gamma-mangostin's antiviral potential and the challenges to its therapeutic development.

Graphical Abstract

A spotlight on gamma-mangostin: exploring its potential as antiviral agents

Keywords

Main Subjects

[1] (a) S. Suksamrarn, N. Suwannapoch, W. Phakhodee, J. Thanuhiranlert, P. Ratananukul, N. Chimnoi, A. Suksamrarn, Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana,  Pharm. Bull., 200351, 857-859. [Crossref], [Google Scholar], [Publisher]‎, (b) A. Zarei, R. Amirkhani, M. Gholampour, H. Tavakoli, A. Ramazani, Natural compounds as strong SARS-CoV-2 main protease inhibitors: computer-based study, J. Med. Pharm. Chem. Res., 2023, 5, 969-986. [Crossref], [Pdf], [Publisher]‎, (c) M. Ahmeid, S. Essa, E.R. Jasim, Evaluating the level of vitamin D in Iraqi covid-19 patients and its association with biochemical parameters, J. Med. Pharm. Chem. Res., 2023, 5, 126-135. [Pdf], [Publisher]‎, (d) S. Rezaei, B. Naghipour, M. Rezaei, M. Dadashzadeh, S. Sadeghi, Chemical evaluation of gastrointestinal, coronary and pulmonary complications in patients admitted to the intensive care unit, J. Med. Pharm. Chem. Res., 2022, 4, 557-566. [Crossref], [Pdf], [Google Scholar], [Publisher]‎, (e) M.A.H. Roni, M.G. Mortuza, Rozina, ,., R.K. Shaha, S. Hoque, A. Kumer, Identification of SARS-CoV-2 inhibitors from alkaloids using molecular modeling and in silico approaches, J. Med. Nanomater. Chem., 2023, In Press, 252-266. [Crossref], [Pdf], [Publisher]‎, (f) V.R. Lakshmidevi, D. Reeja, A.R. Rajan, B. Vinod, Advanced spectrum of imidazole derivatives in therapeutics: a review, J. Chem. Rev., 2023; 5, 241-262. [Crossref], [Pdf], [Publisher]‎, (g) E. Edache, H. Dawi, F. Ugbe, 3D-QSAR, molecular docking, molecular dynamics simulations and structural studies of some selected inhibitors of the glycoprotein (GPC) of lassa virus, J. Appl. Organomet. Chem., 2023, 3, 224-244. [Crossref], [Pdf], [Google Scholar], [Publisher]‎
[2] P. Moongkarndi, N. Kosem, O. Luanratana, S. Jongsomboonkusol, N. Pongpan, B. Sudatis, Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line, J. Ethnopharmacol., 2004, 90, 161-166. [Crossref], [Google Scholar], [Publisher]‎
[3] V.T. Nguyen, T. Tran, T. Van Vo, Antiviral activity of garcinol and its derivatives against influenza A virus in vitro and in vivo, Bioorg. Med. Chem. Lett., 2012, 22, 3919-3923. [Crossref], [Google Scholar], [Publisher]‎
[4] S. Ben-Shabat, L. Yarmolinsky, D. Porat, A. Dahan, Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies, Drug Deliv. Transl. Res., 2020, 10, 354–367 [Crossref], [Google Scholar], [Publisher]‎
[5] S. Tewtrakul, C. Wattanapiromsakul, W. Mahabusarakam, Effects of compounds from Garcinia mangostana on inflammatory mediators in RAW264.7 macrophage cells, J. Ethnopharmacol., 2009, 121, 379-382 [Crossref], [Google Scholar], [Publisher]‎
[6] S.Y. Tsai, P.C. Chung, E.E. Owaga, I.J. Tsai, P.Y. Wang, J.I. Tsai, T.S. Yeh, R.H. Hsieh, Alpha-mangostin from mangosteen (Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis, Nutr. Metab., 2016, 13, 1-10  [Crossref], [Google Scholar], [Publisher]‎
[7] L.G. Chen, L.L. Yang, C.C. Wang, Anti-inflammatory activity of mangostins from Garcinia mangostana. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2008, 46, 688–693 [Crossref], [Google Scholar], [Publisher]‎
[8] M. Karim, W. Lo C, S. Einav, Preparing for the next viral threat with broad-spectrum antivirals, J. Clin. Investig., 2023, 133, e170236. [Crossref], [Google Scholar], [Publisher]‎
[9] C. Xu, G. Sun, G. Yuan, α-Mangostin suppresses the viability and epithelial-mesenchymal transition of pancreatic cancer cells by downregulating the PI3K/Akt pathway, Biomed. Res. Int. 2020, 2020, 2726931. [Crossref], [Google Scholar], [Publisher]‎
[10] X.  Zhu, J. Li,  H. Ning, , Z. Yuan, Y. Zhong,  S. Wu, J.Z .Zeng,  α-Mangostin induces apoptosis and inhibits metastasis of breast cancer cells via regulating RXRα-AKT signaling pathway, Front. Pharmacol.2021, 12, 739658. [Crossref], [Google Scholar], [Publisher]‎
[11] V. Minervini, C.P. France, Effects of opioid/cannabinoid mixtures on impulsivity and memory in rhesus monkeys, Behav. Pharmacol., 2020, 31, 233–248. [Crossref], [Google Scholar], [Publisher]‎
[12] R. Watanapokasin, F. Jarinthanan, Y. Nakamura, N. Sawasjirakij, A. Jaratrungtawee, S. Suksamrarn, Effects of α-mangostin on apoptosis induction of human colon cancer, World J. Gastroenterol., 2011, 17, 2086–2095. [Crossref], [Google Scholar], [Publisher]‎
[13] X. Tu, C. Li,  W. Sun,  X. Tian, Q. Li, S. Wang, X. Ding, Z. Huang, Suppression of Cancer Cell Stemness and Drug Resistance via MYC Destabilization by Deubiquitinase USP45 Inhibition with a Natural Small Molecule, Cancers, 2023, 15, 930. [Crossref], [Google Scholar], [Publisher]‎
[14] D. Chatterjee, N. Vhora, A. Goswami, A. Hiray, A. Jain, A. S. Kate, In-silico and in-vitro hybrid approach to identify glucagon-like peptide-1 receptor agonists from anti-diabetic natural products, Nat. Prod. Res., 2023, 37, 1651–1655. [Crossref], [Google Scholar], [Publisher]‎
[15] R. Li, B.S. Inbaraj, B.H. Chen, Quantification of xanthone and anthocyanin in mangosteen peel by UPLC-MS/MS and preparation of nanoemulsions for studying their inhibition effects on liver cancer cells, Int. J. Mol. Sci., 2023, 24, 3934. [Crossref], [Google Scholar], [Publisher]‎
[16] S. Wang, Q. Zhang, M. Peng, J. Xu, Y. Guo, Design, Synthesis, Biological evaluation, and preliminary mechanistic study of a novel mitochondrial-targeted xanthone, Molecules, 2023, 28, 1016. [Crossref], [Google Scholar], [Publisher]‎
[17] E. Marchese, V. Orlandi, F. Turrini, I. Romeo, R. Boggia, S. Alcaro, G. Costa, In silico and in vitro study of antioxidant potential of urolithins. Antioxidants, 2023, 12, 697. [Crossref], [Google Scholar], [Publisher]‎
[18] A. Chouni, S. Paul, A comprehensive review of the phytochemical and pharmacological potential of an evergreen plant garcinia cowa. Chem. Biodivers., 2023, 20, e202200910. [Crossref], [Google Scholar], [Publisher]‎
[19] Y. Niu,  Q. Li, C. Tu,  N. Li,  L. Gao,  H. Lin, Z. Wang,  Z. Zhou, L. Li, Hypouricemic Actions of the Pericarp of Mangosteen in Vitro and in Vivo, J. Nat. Prod., 2023, 86, 24–33. [Crossref], [Google Scholar], [Publisher]‎
[20] A. Cruz-Gregorio, A. K. Aranda-Rivera, O. E. Aparicio-Trejo, O.N. Medina-Campos, E. Sciutto, G. Fragoso, J. Pedraza-Chaverri, α-Mangostin induces oxidative damage, mitochondrial dysfunction, and apoptosis in a triple-negative breast cancer model, Phytotherapy Research: PTR, 2023, 37, 3394–3407. [Crossref], [Google Scholar], [Publisher]‎
[21] R. Ahmadian, M. R. Heidari, B.M. Razavi, H. Hosseinzadeh, Alpha-mangostin protects PC12 cells against neurotoxicity induced by cadmium and arsenic, Biol. Trace Elem. Res., 2023, 201, 4008–4021. [Crossref], [Google Scholar], [Publisher]‎
[22] Y.H. Lee, P.L. Hsieh, S.C. Chao, Y.W. Liao, C.M. Liu, C.C. Yu, α-Mangostin inhibits the activation of myofibroblasts via downregulation of linc-ROR-mediated TGFB1/smad signaling, Nutrients, 2023, 15, 1321. [Crossref], [Google Scholar], [Publisher]‎
[23] Y.J. Wu, S.S. Zhang, Q. Yin,  M. Lei, Q.H. Wang, W.G. Chen, T.T. Luo, P. Zhou, C.L. Ji, α-Mangostin inhibited M1 polarization of macrophages/monocytes in antigen-induced arthritis mice by up-regulating silent information regulator 1 and peroxisome proliferators-activated receptor γ simultaneously, Drug Des. Devel. Ther., 2023, 17, 563–577. [Crossref], [Google Scholar], [Publisher]‎
[24] B. Lawal, A.T. Wu, C.H.M. Chen, G.T.A.S. Y. Wu, Identification of INFG/STAT1/NOTCH3 as γ-Mangostin's potential targets for overcoming doxorubicin resistance and reducing cancer-associated fibroblasts in triple-negative breast cancer, Biomed. Pharmacother., 2023, 163, 114800. [Crossref], [Google Scholar], [Publisher]‎
[25] T.T. Le, N.T. Trang, V.T.T. Pham, D.N. Quang, L.T. Phuong Hoa, Bioactivities of β-mangostin and its new glycoside derivatives synthesized by enzymatic reactions, R. Soc. Open Sci., 2023, 10, 230676. [Crossref], [Google Scholar], [Publisher]‎
[26] M.T. Khayat, K.A. Mohammad, G.A. Mohamed, D.S. El-Agamy, W.M. Elsaed, S.R.M. Ibrahim, γ-Mangostin abrogates AINT-induced cholestatic liver injury: Impact on Nrf2/NF-κB/NLRP3/Caspase-1/IL-1β/GSDMD signaling, Life Sci., 2023, 322, 121663. [Crossref], [Google Scholar], [Publisher]‎
[27] X. Li, M. Geng, Y. Peng, L. Meng, S. Lu, Molecular immune pathogenesis and diagnosis of COVID-19, J. Pharm. Anal., 2020, 10, 102-108. [Crossref], [Google Scholar], [Publisher]‎
[28] Y. Cai, J. Zhang, T. Xiao, H. Peng, S.M. Sterling, R.M. Walsh Jr, S. Rawson, S. Rits-Volloch, B. Chen, Distinct conformational states of SARS-CoV-2 spike protein, Science, 2020, 369, 1586-1592.  [Crossref], [Google Scholar], [Publisher]‎
[29] M.A. Marra, S.J. Jones, C.R. Astell, R.A. Holt, A. Brooks-Wilson, Y.S. Butterfield, J. Khattra, J.K. Asano, S.A. Barber, S.Y. Chan, A. Cloutier, The genome sequence of the SARS-associated coronavirus, Science, 2003, 300, 1399-1404. [Crossref], [Google Scholar], [Publisher]‎
[30] F. Wu, S. Zhao , B. Yu, Y.M. Chen, W. Wang, Z.G. Song, Y. Hu, Z.W. Tao, J.H. Tian, Y.Y. Pei, M.L. Yuan, A new coronavirus associated with human respiratory disease in China, Nature, 2020, 579, 265-269. [Crossref], [Google Scholar], [Publisher]‎
[31] A.N.M. Ansori, V.D. Kharisma, A.A. Parikesit, F.A. Dian, R.T. Probojati, M. Rebezov, P. Scherbakov, P. Burkov, G. Zhdanova, A. Mikhalev, Y. Antonius, N.I. Sumantri, T.H. Sucipto, R. Zainul, P.M.R. Fadhil, Bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanism against SARS-CoV-2: an in silico approach, Pharmacogn. J., 2022, 14, 85-90. [Crossref], [Google Scholar], [Publisher]‎
[32] V.D. Kharisma, A.N.M. Ansori, Y. Antonius, I. Rosadi, A.A.A. Murtadlo, V. Jakhmola, M. Rebezov, N. Maksimiuk, E. Kolesnik, P. Burkov, M. Derkho, P. Scherbakov, M.E. Ullah, T.H. Sucipto, H. Purnobasuki, Garcinoxanthones from Garcinia mangostana L. against SARS-CoV-2 infection and cytokine storm pathway inhibition: A viroinformatics study, J. Pharm. Pharmacogn. Res., 2023, 11, 743-756. [Crossref], [Google Scholar], [Publisher]‎
[33] L. Zhang, D. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K.  Rox, R. Hilgenfeld, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science, 2020, 368, 409-412. [Crossref], [Google Scholar], [Publisher]‎
[34] W. Dai, B. Zhang, X.M. Jiang, H. Su, J. Li, Y. Zhao, X. Xie, Z. Jin, J. Peng, F. Liu, C. Li, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science, 2020, 368, 1331-1335. [Crossref], [Google Scholar], [Publisher]‎
[35] D. Wrapp, N. Wang, K.S. Corbett, J.A. Goldsmith, C.L. Hsieh, O. Abiona, B.S. Graham, J.S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, 2020, 367, 1260-1263. [Crossref], [Google Scholar], [Publisher]‎
[36] J. Shang, G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach, F. Li, Structural basis of receptor recognition by SARS-CoV-2, Nature, 2020, 581, 221-224. [Crossref], [Google Scholar], [Publisher]‎
[37] R.J. Khan, R.K. Jha, G.M. Amera, M. Jain, E. Singh, A. Pathak, R.P. Singh, J. Muthukumaran, A.K. Singh, Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase, J. Biomol. Struct. Dyn., 2021, 39, 3203-3221. [Crossref], [Google Scholar], [Publisher]‎
[38] Y. Gao, L. Yan, Y. Huang, F. Liu, Y. Zhao, L. Cao, T. Wang, Q. Sun, Z. Ming, L. Zhang, J. Ge, Structure of the RNA-dependent RNA polymerase from COVID-19 virus, Science, 2020, 368, 779-782. [Crossref], [Google Scholar], [Publisher]‎
[39] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell researc., 2020, 30, 269-271. [Crossref], [Google Scholar], [Publisher]‎
[40] L.U. Setyawati, W. Nurhidayah, N.K. Khairul Ikram, W.E. Mohd Fuad, M. Muchtaridi, General toxicity studies of alpha mangostin from Garcinia mangostana: A systematic review, Heliyon, 20239, e16045. [Crossref], [Google Scholar], [Publisher]‎
[41] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.H. Wu, A. Nitsche, M.A. Müller, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, 2020, 181, 271-280.e8. [Crossref], [Google Scholar], [Publisher]‎
[42] C. Kong, L. Jia, J. Jia, γ-mangostin attenuates amyloid-β42-induced neuroinflammation and oxidative stress in microglia-like BV2 cells via the mitogen-activated protein kinases signaling pathway, Eur. J. Pharmacol., 2022, 917, 174744. [Crossref], [Google Scholar], [Publisher]‎
[43] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan,  Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, 2020, 582, 289-293. [Crossref], [Google Scholar], [Publisher]‎
[44] C. Ding, Z. Song, A. Shen, T. Chen, A. Zhang, Small molecules targeting the innate immune cGAS‒STING‒TBK1 signaling pathway. Acta pharmaceutica Sinica. B, 2020, 10, 2272–2298. [Crossref], [Google Scholar], [Publisher]‎
[45] A. Mullard, COVID-19 vaccine development pipeline gears up. Lancet., 2020, 395, 1751-1752. [Crossref], [Google Scholar], [Publisher]‎
[46] J.Y. Baek, K. Jung, Y.M. Kim, H.Y. Kim, K.S. Kang, Y.W. Chin, Protective Effect of γ-mangostin Isolated from the Peel of Garcinia mangostana against Glutamate-Induced Cytotoxicity in HT22 Hippocampal Neuronal Cells, Biomolecules, 2021, 11, 170. [Crossref], [Google Scholar], [Publisher]‎
[47] T. Tang, M. Bidon, J.A. Jaimes, G.R. Whittaker, S. Daniel, Coronavirus membrane fusion mechanism offers a potential target for antiviral development, Antiviral Res., 2020, 178, 104792. [Crossref], [Google Scholar], [Publisher]‎
[48] S.P. Chen, S.R. Lin, T.H. Chen, H.S. Ng, H.S. Yim, M.K. Leong, C.F. Weng, Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2021, 144, 112333. [Crossref], [Google Scholar], [Publisher]‎
[49] S. Ozono, Y. Zhang, H. Ode, K. Sano, T.S. Tan, K. Imai, K. Miyoshi, S. Kishigami, T. Ueno, Y. Iwatani, T. Suzuki, SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nature communications, 2021, 12, 848. [Crossref], [Google Scholar], [Publisher]‎
[50] T.Y. Pramana, B. Wasita, V. Widyaningsih, R. Cilmiaty, S. Suroto, A. Mudigdo, B. Purwanto,The ethanol extract of Garcinia mangostana L peel reduces the isoniazid-induced liver damage in rats, Bali Medical Journal, 2021, 10, 156–159. [Crossref], [Google Scholar], [Publisher]‎
[51] R.S. Indharty, I. Japardi, A.M. Siahaan, S. Tandean, Mangosteen extract reduce apoptosis via inhibition of oxidative process in rat model of traumatic brain injury, Bali Medical Journal, 2019, 8, 227–232. [Crossref], [Google Scholar], [Publisher]‎
[52] P.S. Hu, N.Y. Hsia, W.C. Chien, M.C. Mong, T.C. Hsia, H.M. Chang, Y.C. Wang, W.S. Chang, D.T. Bau, C.W. Tsai, Protective effects of gamma-mangostin on hydrogen peroxideinduced cytotoxicity in human retinal pigment epithelial cells, In Vivo, 2022, 36, 1676–1683. [Crossref], [Google Scholar], [Publisher]‎
[53] A.T. Wu, Y.C. Yeh, Y.J. Huang, N. Mokgautsi, B. Lawal, T.H. Huang, Gamma-mangostin isolated from garcinia mangostana suppresses colon carcinogenesis and stemness by downregulating the GSK3β/β-catenin/CDK6 cancer stem pathway, Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2022, 95, 153797. [Crossref], [Google Scholar], [Publisher]‎